TheUI / app.py
Dave-A's picture
Update app.py
c837201
raw
history blame
1.64 kB
from distutils.command.upload import upload
import streamlit as st
from io import StringIO
from PIL import Image
import pandas as pd
import numpy as np
#import glob
#import os
import torch
import torch.nn as nn
#from torch.utils.data import Dataset, DataLoader
import torchvision.models as models
#from torchinfo import summary
#from sklearn.model_selection import StratifiedKFold
#from sklearn.metrics import accuracy_score
#from tqdm import tqdm
#import opencv-python
import cv2
import albumentations as A # Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. (https://albumentations.ai/)
#import matplotlib.pyplot as plt
#import seaborn as sns
from albumentations.pytorch.transforms import ToTensorV2
model = models.resnet50(pretrained=False)
model.fc = nn.Linear(2048, 21)
model.load_state_dict(torch.load('resnet_best.pth', map_location=torch.device('cpu')), strict=True)
st.title("some big ML function")
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
if ".jpg" in uploaded_file.name or ".png" in uploaded_file.name:
img = Image.open(uploaded_file)
st.image(img)
img = np.array(img)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
cust_transform = A.Compose([A.Resize(height=256, width=256, p=1.0),ToTensorV2(p=1.0)], p=1.0)
tensor = cust_transform(image=img)
tensor = tensor['image'].float(),resize(1,3,256,256)
custom_pred = model.forward(tensor).detach().numpy()
custom_pred
elif ".csv" in uploaded_file.name:
dataframe = pd.read_csv(uploaded_file)
st.write(dataframe)