|
from distutils.command.upload import upload |
|
import streamlit as st |
|
from io import StringIO |
|
from PIL import Image |
|
import pandas as pd |
|
import numpy as np |
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
import torchvision.models as models |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import cv2 |
|
import albumentations as A |
|
|
|
|
|
from albumentations.pytorch.transforms import ToTensorV2 |
|
|
|
model = models.resnet50(pretrained=False) |
|
model.fc = nn.Linear(2048, 21) |
|
model.load_state_dict(torch.load('resnet_best.pth', map_location=torch.device('cpu')), strict=True) |
|
|
|
st.title("some big ML function") |
|
|
|
uploaded_file = st.file_uploader("Choose a file") |
|
|
|
if uploaded_file is not None: |
|
if ".jpg" in uploaded_file.name or ".png" in uploaded_file.name: |
|
img = Image.open(uploaded_file) |
|
st.image(img) |
|
img = np.array(img) |
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
cust_transform = A.Compose([A.Resize(height=256, width=256, p=1.0),ToTensorV2(p=1.0)], p=1.0) |
|
tensor = cust_transform(image=img) |
|
tensor = tensor['image'].float(),resize(1,3,256,256) |
|
|
|
custom_pred = model.forward(tensor).detach().numpy() |
|
custom_pred |
|
|
|
elif ".csv" in uploaded_file.name: |
|
dataframe = pd.read_csv(uploaded_file) |
|
st.write(dataframe) |
|
|
|
|