Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
-
|
|
|
2 |
from io import StringIO
|
3 |
from PIL import Image
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
-
import glob
|
7 |
-
import os
|
8 |
|
9 |
import torch
|
10 |
import torch.nn as nn
|
11 |
-
from torch.utils.data import Dataset, DataLoader
|
12 |
import torchvision.models as models
|
13 |
#from torchinfo import summary
|
14 |
|
@@ -18,14 +19,14 @@ import torchvision.models as models
|
|
18 |
#from tqdm import tqdm
|
19 |
#import opencv-python
|
20 |
import cv2
|
21 |
-
|
22 |
#import matplotlib.pyplot as plt
|
23 |
#import seaborn as sns
|
24 |
-
|
25 |
|
26 |
model = models.resnet50(pretrained=False)
|
27 |
model.fc = nn.Linear(2048, num_classes)
|
28 |
-
model.load_state_dict(torch.load('resnet_best.pth'), strict=True)
|
29 |
|
30 |
st.title("some big ML function")
|
31 |
|
@@ -33,8 +34,9 @@ uploaded_file = st.file_uploader("Choose a file")
|
|
33 |
|
34 |
if uploaded_file is not None:
|
35 |
if ".jpg" in uploaded_file.name or ".png" in uploaded_file.name:
|
36 |
-
|
37 |
-
st.image(
|
|
|
38 |
|
39 |
elif ".csv" in uploaded_file.name:
|
40 |
dataframe = pd.read_csv(uploaded_file)
|
|
|
1 |
+
from distutils.command.upload import upload
|
2 |
+
import streamlit as st
|
3 |
from io import StringIO
|
4 |
from PIL import Image
|
5 |
import pandas as pd
|
6 |
import numpy as np
|
7 |
+
#import glob
|
8 |
+
#import os
|
9 |
|
10 |
import torch
|
11 |
import torch.nn as nn
|
12 |
+
#from torch.utils.data import Dataset, DataLoader
|
13 |
import torchvision.models as models
|
14 |
#from torchinfo import summary
|
15 |
|
|
|
19 |
#from tqdm import tqdm
|
20 |
#import opencv-python
|
21 |
import cv2
|
22 |
+
import albumentations as A # Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. (https://albumentations.ai/)
|
23 |
#import matplotlib.pyplot as plt
|
24 |
#import seaborn as sns
|
25 |
+
from albumentations.pytorch.transforms import ToTensorV2
|
26 |
|
27 |
model = models.resnet50(pretrained=False)
|
28 |
model.fc = nn.Linear(2048, num_classes)
|
29 |
+
model.load_state_dict(torch.load('resnet_best.pth', map_location=torch.device('cpu')), strict=True)
|
30 |
|
31 |
st.title("some big ML function")
|
32 |
|
|
|
34 |
|
35 |
if uploaded_file is not None:
|
36 |
if ".jpg" in uploaded_file.name or ".png" in uploaded_file.name:
|
37 |
+
img = Image.open(uploaded_file)
|
38 |
+
st.image(img)
|
39 |
+
img = np.array(img)
|
40 |
|
41 |
elif ".csv" in uploaded_file.name:
|
42 |
dataframe = pd.read_csv(uploaded_file)
|