from distutils.command.upload import upload import streamlit as st from io import StringIO from PIL import Image import pandas as pd import numpy as np #import glob #import os import torch import torch.nn as nn #from torch.utils.data import Dataset, DataLoader import torchvision.models as models #from torchinfo import summary #from sklearn.model_selection import StratifiedKFold #from sklearn.metrics import accuracy_score #from tqdm import tqdm #import opencv-python import cv2 import albumentations as A # Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. (https://albumentations.ai/) #import matplotlib.pyplot as plt #import seaborn as sns from albumentations.pytorch.transforms import ToTensorV2 id2class = {0: 'agricultural', 1: 'airplane', 2: 'baseballdiamond', 3: 'beach', 4: 'buildings', 5: 'chaparral', 6: 'denseresidential', 7: 'forest', 8: 'freeway', 9: 'golfcourse', 10: 'intersection', 11: 'mediumresidential', 12: 'mobilehomepark', 13: 'overpass', 14: 'parkinglot', 15: 'river', 16: 'runway', 17: 'sparseresidential', 18: 'storagetanks', 19: 'tenniscourt', 20: 'harbor'} model = models.resnet50(pretrained=False) model.fc = nn.Linear(2048, 21) model.load_state_dict(torch.load('resnet_best.pth', map_location=torch.device('cpu')), strict=True) st.title("some big ML function") uploaded_file = st.file_uploader("Choose a file") if uploaded_file is not None: if ".jpg" in uploaded_file.name or ".png" in uploaded_file.name: img = Image.open(uploaded_file) st.image(img) img = np.array(img) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) cust_transform = A.Compose([A.Resize(height=256, width=256, p=1.0),ToTensorV2(p=1.0)], p=1.0) tensor = cust_transform(image=img) tensor = tensor['image'].float().resize(1,3,256,256) model.eval() custom_pred = model.forward(tensor).detach().numpy() custom_pred id2class[np.argmax(custom_pred)] elif ".csv" in uploaded_file.name: dataframe = pd.read_csv(uploaded_file) st.write(dataframe)