File size: 3,315 Bytes
2ea16ba
 
 
 
 
 
78c2a6a
2ea16ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0710285
 
 
2ea16ba
 
 
 
 
 
 
 
 
78c2a6a
fe7089f
78c2a6a
 
2ea16ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78c2a6a
2ea16ba
78c2a6a
2ea16ba
 
 
a5b0df0
2ea16ba
 
78c2a6a
2ea16ba
 
50e3d1c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import joblib
from transformers import AutoFeatureExtractor, WavLMModel
import torch
import soundfile as sf
import numpy as np
import gradio as gr
import librosa

class HuggingFaceFeatureExtractor:
    def __init__(self, model_class, name):
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.feature_extractor = AutoFeatureExtractor.from_pretrained(name)
        self.model = model_class.from_pretrained(name)
        self.model.eval()
        self.model.to(self.device)

    def __call__(self, audio, sr):
        inputs = self.feature_extractor(
            audio,
            sampling_rate=sr,
            return_tensors="pt",
            padding=True,
        )
        inputs = {k: v.to(self.device) for k, v in inputs.items()}
        with torch.no_grad():
            outputs = self.model(**inputs)
        return outputs.last_hidden_state

FEATURE_EXTRACTORS = {
    "wavlm-base": lambda: HuggingFaceFeatureExtractor(WavLMModel, "microsoft/wavlm-base"),
    "wavLM-V1": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-Deepfake_V1"),
    "wavLM-V2": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-Deepfake_V2"),
    "wavLM-V3": lambda: HuggingFaceFeatureExtractor(WavLMModel, "DavidCombei/wavLM-base-Deepfake_V3"),
}

model1 = joblib.load('model1.joblib')
model2 = joblib.load('model2.joblib')
model3 = joblib.load('model3.joblib')
model4 = joblib.load('model4.joblib')
final_model = joblib.load('final_model.joblib')

def process_audio(file_audio):
    audio, sr = librosa.load(file_audio, sr=16000)  # Resample to 16 kHz

    if len(audio.shape) > 1:
        audio = audio[0]

    extractor_1 = FEATURE_EXTRACTORS['wavlm-base']()
    extractor_2 = FEATURE_EXTRACTORS['wavLM-V1']()
    extractor_3 = FEATURE_EXTRACTORS['wavLM-V2']()
    extractor_4 = FEATURE_EXTRACTORS['wavLM-V3']()

    eval1 = extractor_1(audio, sr)
    eval1 = torch.mean(eval1, dim=1).cpu().numpy()

    eval2 = extractor_2(audio, sr)
    eval2 = torch.mean(eval2, dim=1).cpu().numpy()

    eval3 = extractor_3(audio, sr)
    eval3 = torch.mean(eval3, dim=1).cpu().numpy()

    eval4 = extractor_4(audio, sr)
    eval4 = torch.mean(eval4, dim=1).cpu().numpy()

    eval1 = eval1.reshape(1, -1)
    eval2 = eval2.reshape(1, -1)
    eval3 = eval3.reshape(1, -1)
    eval4 = eval4.reshape(1, -1)

    eval_prob1 = model1.predict_proba(eval1)[:, 1].reshape(-1, 1)
    eval_prob2 = model2.predict_proba(eval2)[:, 1].reshape(-1, 1)
    eval_prob3 = model3.predict_proba(eval3)[:, 1].reshape(-1, 1)
    eval_prob4 = model4.predict_proba(eval4)[:, 1].reshape(-1, 1)

    eval_combined_probs = np.hstack((eval_prob1, eval_prob2, eval_prob3, eval_prob4))

    final_prob = final_model.predict_proba(eval_combined_probs)[:, 1]

    if final_prob < 0.5:
        return f"Fake with a confidence of: {100 - final_prob[0] * 100:.2f}%"
    else:
        return f"Real with a confidence of: {final_prob[0] * 100:.2f}%"

interface = gr.Interface(
    fn=process_audio,
    inputs=gr.Audio(type="filepath"),
    outputs="text",
    title="Audio Deepfake Detection",
    description="Upload an audio file to detect whether it is fake or real. The system uses features ensamble from wavLM base and finetuned versions. Submitted to ASVSpoof5.",
)

interface.launch(share=True)