Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import numpy as np | |
import segmentation_models_pytorch as smp | |
import torch | |
import torch.nn.functional as F | |
from torchvision import transforms | |
from torchvision.utils import draw_segmentation_masks | |
config = { | |
"downsize_res": 512, | |
"batch_size": 6, | |
"epochs": 30, | |
"lr": 3e-4, | |
"model_architecture": "Unet", | |
"model_config": { | |
"encoder_name": "resnet34", | |
"encoder_weights": "imagenet", | |
"in_channels": 3, | |
"classes": 7, | |
}, | |
} | |
colors = [ | |
(0, 255, 255), | |
(255, 255, 0), | |
(255, 0, 255), | |
(0, 255, 0), | |
(0, 0, 255), | |
(255, 255, 255), | |
(0, 0, 0), | |
] | |
cp_path = "CP_epoch20.pth" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# load model | |
model_architecture = getattr(smp, config["model_architecture"]) | |
model = model_architecture(**config["model_config"]) | |
model.load_state_dict(torch.load(cp_path, map_location=torch.device(device))) | |
model.to(device) | |
model.eval() | |
# transforms | |
downsize_t = transforms.Resize(config["downsize_res"], antialias=True) | |
transform = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
] | |
) | |
def label_to_onehot(mask: torch.Tensor, num_classes: int) -> torch.Tensor: | |
"""Transforms a tensor from label encoding to one hot encoding in boolean dtype""" | |
dims_p = (2, 0, 1) if mask.ndim == 2 else (0, 3, 1, 2) | |
return torch.permute( | |
F.one_hot(mask.type(torch.long), num_classes=num_classes).type(torch.bool), | |
dims_p, | |
) | |
def get_overlay(image: torch.Tensor, preds: torch.Tensor, alpha: float) -> torch.Tensor: | |
"""Generates the segmentation ovelay for an satellite image""" | |
masks = label_to_onehot(preds.squeeze(), 7) | |
overlay = draw_segmentation_masks(image, masks=masks, alpha=alpha, colors=colors) | |
return overlay | |
def hwc_to_chw(image_tensor: torch.Tensor) -> torch.Tensor: | |
return torch.permute(image_tensor, (2, 0, 1)) | |
def chw_to_hwc(image_tensor: torch.Tensor) -> torch.Tensor: | |
return torch.permute(image_tensor, (1, 2, 0)) | |
def segment(satellite_image: np.ndarray) -> tuple[np.ndarray, np.ndarray]: | |
image_tensor = torch.from_numpy(satellite_image) | |
image_tensor = hwc_to_chw(image_tensor) | |
pil_image = transforms.functional.to_pil_image(image_tensor) | |
# preprocess image | |
X = transform(pil_image).unsqueeze(0) | |
X = X.to(device) | |
X_down = downsize_t(X) | |
# forward pass | |
logits = model(X_down) | |
preds = torch.argmax(logits, 1).detach() | |
# resize to evaluate with the original image | |
preds = transforms.functional.resize(preds, X.shape[-2:], antialias=True) | |
# get rbg formatted images | |
segmentation_overlay = chw_to_hwc(get_overlay(image_tensor, preds, 0.2)).numpy() | |
raw_segmentation = chw_to_hwc( | |
get_overlay(torch.zeros_like(image_tensor), preds, 1) | |
).numpy() | |
return raw_segmentation, segmentation_overlay | |
inputs = gr.inputs.Image(label="Input Image") | |
outputs = [gr.Image(label="Raw Segmentation"), gr.Image(label="Segmentation Overlay")] | |
images_dir = "sample_sat_images/" | |
examples = [f"{images_dir}/{image_id}" for image_id in os.listdir(images_dir)] | |
title = "Satellite Images Landcover Classification" | |
description = ( | |
"Upload a satellite image from your computer or select one from" | |
" the examples to automatically. The model will segment the landcover" | |
" types from a preselected set of possible types." | |
) | |
article = open("article.md", "r").read() | |
iface = gr.Interface( | |
segment, | |
inputs, | |
outputs, | |
examples=examples, | |
title=title, | |
description=description, | |
cache_examples=True, | |
article=article, | |
) | |
iface.launch() | |