DavidFarrell commited on
Commit
0b190f6
·
1 Parent(s): 8bfea95

let's see why mine isn't working

Browse files
Files changed (2) hide show
  1. app copy.py +29 -0
  2. app.py +13 -22
app copy.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # AUTOGENERATED! DO NOT EDIT! File to edit: drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb.
2
+
3
+ # %% auto 0
4
+ __all__ = ['learn', 'labels', 'predict']
5
+
6
+ # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 1
7
+ from fastai.vision.all import *
8
+ import skimage
9
+
10
+ # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 4
11
+ learn = load_learner('export.pkl')
12
+
13
+ labels = learn.dls.vocab
14
+
15
+ def predict(img):
16
+ img = PILImage.create(img)
17
+ pred, pred_idx, probs = learn.predict(img)
18
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
19
+
20
+
21
+
22
+
23
+ # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 7
24
+ import gradio as gr
25
+ #gr.Interface(fn=predict, inputs=gr.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3), title="Pet Breed Classifier", description="A pet breed classifier trained on the Oxford Pets dataset using the fastai library (5 epochs) as a proof of concept for Gradio.", article="<p style='text-align: center'><a href='https://gameologist.com/portfolio' target='_blank'>see more of my things here</a></p>", examples=['abys.jpg', 'download (3).jpg'], enable_queue=True).launch()
26
+
27
+ iface = gr.Interface(fn=predict, inputs=gr.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3))
28
+ iface.launch();
29
+
app.py CHANGED
@@ -1,29 +1,20 @@
1
- # AUTOGENERATED! DO NOT EDIT! File to edit: drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb.
2
-
3
- # %% auto 0
4
- __all__ = ['learn', 'labels', 'predict']
5
-
6
- # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 1
7
  from fastai.vision.all import *
8
  import skimage
9
 
10
- # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 4
11
  learn = load_learner('export.pkl')
12
 
13
  labels = learn.dls.vocab
14
-
15
  def predict(img):
16
- img = PILImage.create(img)
17
- pred, pred_idx, probs = learn.predict(img)
18
- return {labels[i]: float(probs[i]) for i in range(len(labels))}
19
-
20
-
21
-
22
-
23
- # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 7
24
- import gradio as gr
25
- #gr.Interface(fn=predict, inputs=gr.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3), title="Pet Breed Classifier", description="A pet breed classifier trained on the Oxford Pets dataset using the fastai library (5 epochs) as a proof of concept for Gradio.", article="<p style='text-align: center'><a href='https://gameologist.com/portfolio' target='_blank'>see more of my things here</a></p>", examples=['abys.jpg', 'download (3).jpg'], enable_queue=True).launch()
26
-
27
- iface = gr.Interface(fn=predict, inputs=gr.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3))
28
- iface.launch();
29
-
 
1
+ import gradio as gr
 
 
 
 
 
2
  from fastai.vision.all import *
3
  import skimage
4
 
 
5
  learn = load_learner('export.pkl')
6
 
7
  labels = learn.dls.vocab
 
8
  def predict(img):
9
+ img = PILImage.create(img)
10
+ pred,pred_idx,probs = learn.predict(img)
11
+ return {labels[i]: float(probs[i]) for i in range(len(labels))}
12
+
13
+ title = "Pet Breed Classifier"
14
+ description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces."
15
+ article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>"
16
+ examples = ['abys.jpg', 'download (3).jpg']
17
+ interpretation='default'
18
+ enable_queue=True
19
+
20
+ gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,article=article,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch()