# AUTOGENERATED! DO NOT EDIT! File to edit: drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb. # %% auto 0 __all__ = ['learn', 'labels', 'predict'] # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 1 from fastai.vision.all import * import skimage # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 4 learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # %% drive/MyDrive/Colab Notebooks/fastbook/fastcourse/ch2minimal/tmabrahamgradio/gradiotest/gradiotest.ipynb 7 import gradio as gr #gr.Interface(fn=predict, inputs=gr.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3), title="Pet Breed Classifier", description="A pet breed classifier trained on the Oxford Pets dataset using the fastai library (5 epochs) as a proof of concept for Gradio.", article="
", examples=['abys.jpg', 'download (3).jpg'], enable_queue=True).launch() iface = gr.Interface(fn=predict, inputs=gr.Image(shape=(512,512)), outputs=gr.outputs.Label(num_top_classes=3)) iface.launch();