File size: 22,257 Bytes
d26f860
 
 
 
 
 
 
fe7a40d
d26f860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ad9f2
d26f860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08ad9f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d26f860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
import sqlite3
import gradio as gr
from dog_database import get_dog_description, dog_data
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from search_history import create_history_tab, create_history_component
from smart_breed_matcher import SmartBreedMatcher
from description_search_ui import create_description_search_tab

def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):

    with gr.TabItem("Breed Recommendation"):
        with gr.Tabs():
            with gr.Tab("Find by Criteria"):
                gr.HTML("""
                    <div style='
                        text-align: center;
                        padding: 20px 0;
                        margin: 15px 0;
                        background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
                        border-radius: 10px;
                    '>
                        <p style='
                            font-size: 1.2em;
                            margin: 0;
                            padding: 0 20px;
                            line-height: 1.5;
                            background: linear-gradient(90deg, #4299e1, #48bb78);
                            -webkit-background-clip: text;
                            -webkit-text-fill-color: transparent;
                            font-weight: 600;
                        '>
                            Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
                        </p>
                    </div>
                """)

                with gr.Row():
                    with gr.Column():
                        living_space = gr.Radio(
                            choices=["apartment", "house_small", "house_large"],
                            label="What type of living space do you have?",
                            info="Choose your current living situation",
                            value="apartment"
                        )

                        exercise_time = gr.Slider(
                            minimum=0,
                            maximum=180,
                            value=60,
                            label="Daily exercise time (minutes)",
                            info="Consider walks, play time, and training"
                        )

                        grooming_commitment = gr.Radio(
                            choices=["low", "medium", "high"],
                            label="Grooming commitment level",
                            info="Low: monthly, Medium: weekly, High: daily",
                            value="medium"
                        )

                    with gr.Column():
                        experience_level = gr.Radio(
                            choices=["beginner", "intermediate", "advanced"],
                            label="Dog ownership experience",
                            info="Be honest - this helps find the right match",
                            value="beginner"
                        )

                        has_children = gr.Checkbox(
                            label="Have children at home",
                            info="Helps recommend child-friendly breeds"
                        )

                        noise_tolerance = gr.Radio(
                            choices=["low", "medium", "high"],
                            label="Noise tolerance level",
                            info="Some breeds are more vocal than others",
                            value="medium"
                        )

                get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
                recommendation_output = gr.HTML(label="Breed Recommendations")

            with gr.Tab("Find by Description"):
                description_input, description_search_btn, description_output, loading_msg = create_description_search_tab()


        async def on_find_match_click(*args):
            try:
                user_prefs = UserPreferences(
                    living_space=args[0],
                    exercise_time=args[1],
                    grooming_commitment=args[2],
                    experience_level=args[3],
                    has_children=args[4],
                    noise_tolerance=args[5],
                    space_for_play=True if args[0] != "apartment" else False,
                    other_pets=False,
                    climate="moderate",
                    health_sensitivity="medium",  # 新增: 默認中等敏感度
                    barking_acceptance=args[5]    # 使用 noise_tolerance 作為 barking_acceptance
                )

                recommendations = get_breed_recommendations(user_prefs, top_n=10)

                history_results = [{
                    'breed': rec['breed'],
                    'rank': rec['rank'],
                    'overall_score': rec['final_score'],
                    'base_score': rec['base_score'],
                    'bonus_score': rec['bonus_score'],
                    'scores': rec['scores']
                } for rec in recommendations]

                # 保存到歷史記錄,也需要更新保存的偏好設定
                history_component.save_search(
                    user_preferences={
                        'living_space': args[0],
                        'exercise_time': args[1],
                        'grooming_commitment': args[2],
                        'experience_level': args[3],
                        'has_children': args[4],
                        'noise_tolerance': args[5],
                        'health_sensitivity': "medium",
                        'barking_acceptance': args[5]
                    },
                    results=history_results
                )

                return format_recommendation_html(recommendations, is_description_search=False)

            except Exception as e:
                print(f"Error in find match: {str(e)}")
                import traceback
                print(traceback.format_exc())
                return "Error getting recommendations"

        # 使用 async 和 queue=True
        get_recommendations_btn.click(
            fn=on_find_match_click,
            inputs=[
                living_space,
                exercise_time,
                grooming_commitment,
                experience_level,
                has_children,
                noise_tolerance
            ],
            outputs=recommendation_output,
            queue=True
        )
        

        def on_description_search(description: str):
            try:
                # 初始化匹配器
                matcher = SmartBreedMatcher(dog_data)
                breed_recommendations = matcher.match_user_preference(description, top_n=10)

                # 從描述中提取用戶偏好
                user_prefs = UserPreferences(
                    living_space="apartment" if any(word in description.lower()
                        for word in ["apartment", "flat", "condo"]) else "house_small",
                    exercise_time=120 if any(word in description.lower()
                        for word in ["active", "exercise", "running", "athletic", "high energy"]) else 60,
                    grooming_commitment="high" if any(word in description.lower()
                        for word in ["grooming", "brush", "maintain"]) else "medium",
                    experience_level="experienced" if any(word in description.lower()
                        for word in ["experienced", "trained", "professional"]) else "intermediate",
                    has_children=any(word in description.lower()
                        for word in ["children", "kids", "family", "child"]),
                    noise_tolerance="low" if any(word in description.lower()
                        for word in ["quiet", "peaceful", "silent"]) else "medium",
                    space_for_play=any(word in description.lower()
                        for word in ["yard", "garden", "outdoor", "space"]),
                    other_pets=any(word in description.lower()
                        for word in ["other pets", "cats", "dogs"]),
                    climate="moderate",
                    health_sensitivity="high" if any(word in description.lower()
                        for word in ["health", "medical", "sensitive"]) else "medium",
                    barking_acceptance="low" if any(word in description.lower()
                        for word in ["quiet", "no barking"]) else None
                )

                final_recommendations = []

                for smart_rec in breed_recommendations:
                    breed_name = smart_rec['breed']
                    breed_info = get_dog_description(breed_name)
                    if not isinstance(breed_info, dict):
                        continue

                    # 獲取基礎分數
                    base_score = smart_rec.get('base_score', 0.7)
                    similarity = smart_rec.get('similarity', 0)
                    is_preferred = smart_rec.get('is_preferred', False)

                    bonus_reasons = []
                    bonus_score = 0

                    # 1. 尺寸評估
                    size = breed_info.get('Size', '')
                    if size in ['Small', 'Tiny']:
                        if "apartment" in description.lower():
                            bonus_score += 0.05
                            bonus_reasons.append("Suitable size for apartment (+5%)")
                        else:
                            bonus_score -= 0.25
                            bonus_reasons.append("Size too small (-25%)")
                    elif size == 'Medium':
                        bonus_score += 0.15
                        bonus_reasons.append("Ideal size (+15%)")
                    elif size == 'Large':
                        if "apartment" in description.lower():
                            bonus_score -= 0.05
                            bonus_reasons.append("May be too large for apartment (-5%)")
                    elif size == 'Giant':
                        bonus_score -= 0.20
                        bonus_reasons.append("Size too large (-20%)")

                    # 2. 運動需求評估
                    exercise_needs = breed_info.get('Exercise_Needs', '')
                    if any(word in description.lower() for word in ['active', 'energetic', 'running']):
                        if exercise_needs in ['High', 'Very High']:
                            bonus_score += 0.20
                            bonus_reasons.append("Exercise needs match (+20%)")
                        elif exercise_needs == 'Low':
                            bonus_score -= 0.15
                            bonus_reasons.append("Insufficient exercise level (-15%)")
                    else:
                        if exercise_needs == 'Moderate':
                            bonus_score += 0.10
                            bonus_reasons.append("Moderate exercise needs (+10%)")

                    # 3. 美容需求評估
                    grooming = breed_info.get('Grooming_Needs', '')
                    if user_prefs.grooming_commitment == "high":
                        if grooming == 'High':
                            bonus_score += 0.10
                            bonus_reasons.append("High grooming match (+10%)")
                    else:
                        if grooming == 'High':
                            bonus_score -= 0.15
                            bonus_reasons.append("High grooming needs (-15%)")
                        elif grooming == 'Low':
                            bonus_score += 0.10
                            bonus_reasons.append("Low grooming needs (+10%)")

                    # 4. 家庭適應性評估
                    if user_prefs.has_children:
                        if breed_info.get('Good_With_Children'):
                            bonus_score += 0.15
                            bonus_reasons.append("Excellent with children (+15%)")
                        temperament = breed_info.get('Temperament', '').lower()
                        if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
                            bonus_score += 0.05
                            bonus_reasons.append("Family-friendly temperament (+5%)")

                    # 5. 噪音評估
                    if user_prefs.noise_tolerance == "low":
                        noise_level = breed_noise_info.get(breed_name, {}).get('noise_level', 'Unknown')
                        if noise_level == 'High':
                            bonus_score -= 0.10
                            bonus_reasons.append("High noise level (-10%)")
                        elif noise_level == 'Low':
                            bonus_score += 0.10
                            bonus_reasons.append("Low noise level (+10%)")

                    # 6. 健康考慮
                    if user_prefs.health_sensitivity == "high":
                        health_score = smart_rec.get('health_score', 0.5)
                        if health_score > 0.8:
                            bonus_score += 0.10
                            bonus_reasons.append("Excellent health score (+10%)")
                        elif health_score < 0.5:
                            bonus_score -= 0.10
                            bonus_reasons.append("Health concerns (-10%)")

                    # 7. 品種偏好獎勵
                    if is_preferred:
                        bonus_score += 0.15
                        bonus_reasons.append("Directly mentioned breed (+15%)")
                    elif similarity > 0.8:
                        bonus_score += 0.10
                        bonus_reasons.append("Very similar to preferred breed (+10%)")

                    # 計算最終分數
                    final_score = min(0.95, base_score + bonus_score)

                    space_score = _calculate_space_compatibility(
                        breed_info.get('Size', 'Medium'),
                        user_prefs.living_space
                    )

                    exercise_score = _calculate_exercise_compatibility(
                        breed_info.get('Exercise_Needs', 'Moderate'),
                        user_prefs.exercise_time
                    )

                    grooming_score = _calculate_grooming_compatibility(
                        breed_info.get('Grooming_Needs', 'Moderate'),
                        user_prefs.grooming_commitment
                    )

                    experience_score = _calculate_experience_compatibility(
                        breed_info.get('Care_Level', 'Moderate'),
                        user_prefs.experience_level
                    )

                    scores = {
                        'overall': final_score,
                        'space': space_score,
                        'exercise': exercise_score,
                        'grooming': grooming_score,
                        'experience': experience_score,
                        'noise': smart_rec.get('scores', {}).get('noise', 0.0),
                        'health': smart_rec.get('health_score', 0.5),
                        'temperament': smart_rec.get('scores', {}).get('temperament', 0.0)
                    }


                    final_recommendations.append({
                        'rank': 0,
                        'breed': breed_name,
                        'scores': scores,
                        'base_score': round(base_score, 4),
                        'bonus_score': round(bonus_score, 4),
                        'final_score': round(final_score, 4),
                        'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
                        'info': breed_info,
                        'noise_info': breed_noise_info.get(breed_name, {}),
                        'health_info': breed_health_info.get(breed_name, {})
                    })

                # 根據最終分數排序
                final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))

                # 更新排名
                for i, rec in enumerate(final_recommendations, 1):
                    rec['rank'] = i

                # 保存到歷史記錄
                history_results = [{
                    'breed': rec['breed'],
                    'rank': rec['rank'],
                    'final_score': rec['final_score']
                } for rec in final_recommendations[:10]]

                history_component.save_search(
                    user_preferences=None,
                    results=history_results,
                    search_type="description",
                    description=description
                )

                result = format_recommendation_html(final_recommendations, is_description_search=True)
                return [gr.update(value=result), gr.update(visible=False)]

            except Exception as e:
                error_msg = f"Error processing your description. Details: {str(e)}"
                return [gr.update(value=error_msg), gr.update(visible=False)]


        def _calculate_space_compatibility(size: str, living_space: str) -> float:
            """住宿空間適應性評分"""
            if living_space == "apartment":
                scores = {
                    'Tiny': 0.6,         # 公寓可以,但不是最佳
                    'Small': 0.8,        # 公寓較好
                    'Medium': 1.0,       # 最佳選擇
                    'Medium-Large': 0.6, # 可能有點大
                    'Large': 0.4,        # 太大了
                    'Giant': 0.2        # 不建議
                }
            else:  # house
                scores = {
                    'Tiny': 0.4,         # 房子太大了
                    'Small': 0.6,        # 可以但不是最佳
                    'Medium': 0.8,       # 不錯的選擇
                    'Medium-Large': 1.0, # 最佳選擇
                    'Large': 0.9,        # 也很好
                    'Giant': 0.7         # 可以考慮
                }
            return scores.get(size, 0.5)

        def _calculate_exercise_compatibility(exercise_needs: str, exercise_time: int) -> float:
            """運動需求相容性評分"""
            # 轉換運動時間到評分標準
            if exercise_time >= 120:  # 高運動量
                scores = {
                    'Very High': 1.0,
                    'High': 0.8,
                    'Moderate': 0.5,
                    'Low': 0.2
                }
            elif exercise_time >= 60:  # 中等運動量
                scores = {
                    'Very High': 0.5,
                    'High': 0.7,
                    'Moderate': 1.0,
                    'Low': 0.8
                }
            else:  # 低運動量
                scores = {
                    'Very High': 0.2,
                    'High': 0.4,
                    'Moderate': 0.7,
                    'Low': 1.0
                }
            return scores.get(exercise_needs, 0.5)

        def _calculate_grooming_compatibility(grooming_needs: str, grooming_commitment: str) -> float:
            """美容需求相容性評分"""
            if grooming_commitment == "high":
                scores = {
                    'High': 1.0,
                    'Moderate': 0.8,
                    'Low': 0.5
                }
            elif grooming_commitment == "medium":
                scores = {
                    'High': 0.6,
                    'Moderate': 1.0,
                    'Low': 0.8
                }
            else:  # low
                scores = {
                    'High': 0.3,
                    'Moderate': 0.6,
                    'Low': 1.0
                }
            return scores.get(grooming_needs, 0.5)

        def _calculate_experience_compatibility(care_level: str, experience_level: str) -> float:
            if experience_level == "experienced":
                care_scores = {
                    'High': 1.0,
                    'Moderate': 0.8,
                    'Low': 0.6
                }
            elif experience_level == "intermediate":
                care_scores = {
                    'High': 0.6,
                    'Moderate': 1.0,
                    'Low': 0.8
                }
            else:  # beginner
                care_scores = {
                    'High': 0.3,
                    'Moderate': 0.7,
                    'Low': 1.0
                }
            return care_scores.get(care_level, 0.7)

        def show_loading():
            return [gr.update(value=""), gr.update(visible=True)]


        get_recommendations_btn.click(
            fn=on_find_match_click,
            inputs=[
                living_space,
                exercise_time,
                grooming_commitment,
                experience_level,
                has_children,
                noise_tolerance
            ],
            outputs=recommendation_output
        )

        description_search_btn.click(
            fn=show_loading,  # 先顯示加載消息
            outputs=[description_output, loading_msg]
        ).then(  # 然後執行搜索
            fn=on_description_search,
            inputs=[description_input],
            outputs=[description_output, loading_msg]
        )

    return {
        'living_space': living_space,
        'exercise_time': exercise_time,
        'grooming_commitment': grooming_commitment,
        'experience_level': experience_level,
        'has_children': has_children,
        'noise_tolerance': noise_tolerance,
        'get_recommendations_btn': get_recommendations_btn,
        'recommendation_output': recommendation_output,
        'description_input': description_input,
        'description_search_btn': description_search_btn,
        'description_output': description_output
    }