File size: 19,081 Bytes
406922d
 
 
 
 
 
 
 
 
2b82929
853de85
0b38e77
c255e80
55b65ff
c255e80
55b65ff
 
 
c255e80
406922d
b4e17e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406922d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439595
406922d
 
922691a
406922d
 
 
 
922691a
406922d
 
 
922691a
406922d
 
 
 
 
 
 
 
853de85
7babadc
 
4a1799c
c255e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3186b74
2db8b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
192f46e
 
18b19dd
192f46e
 
 
5d323e9
 
18b19dd
5d323e9
192f46e
18b19dd
5d323e9
192f46e
5d323e9
 
 
 
 
192f46e
 
 
 
 
 
 
 
 
 
 
 
 
 
5d323e9
2c7cd35
2db8b4f
 
 
18b19dd
01ae78a
 
2db8b4f
 
 
729f9dc
406922d
63d6ec9
e9cbeff
c255e80
406922d
3186b74
 
 
18b19dd
 
 
 
5d323e9
18b19dd
 
192f46e
 
 
18b19dd
 
 
 
 
 
a06cdb4
18b19dd
 
 
a06cdb4
18b19dd
 
 
 
 
 
 
c255e80
 
2db8b4f
01ae78a
 
 
192f46e
01ae78a
 
e9cbeff
01ae78a
 
 
 
5d323e9
01ae78a
5d323e9
 
18b19dd
5d323e9
 
 
 
01ae78a
e9cbeff
01ae78a
e9cbeff
729f9dc
 
18b19dd
12d9306
9236f5c
e9cbeff
c255e80
b6095fb
e9cbeff
b6095fb
 
 
18b19dd
30157d2
18b19dd
 
 
 
 
30157d2
 
18b19dd
 
30157d2
 
e9cbeff
 
01ae78a
e9cbeff
30157d2
 
e9cbeff
 
 
30157d2
01ae78a
30157d2
 
 
 
 
 
 
 
 
34f44fd
18b19dd
406922d
 
 
2b04738
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from data_manager import get_dog_description
from urllib.parse import quote
# os.system('pip install ultralytics')
from ultralytics import YOLO
from PIL import ImageDraw


# 下載YOLOv8預訓練模型
model_yolo = YOLO('yolov8n.pt')  # 使用 YOLOv8 預訓練模型


dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier", 
              "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", 
              "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres", 
              "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever", 
              "Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter", 
              "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd", 
              "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees", 
              "Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier", 
              "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel", 
              "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa", 
              "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound", 
              "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian", 
              "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed", 
              "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", 
              "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel", 
              "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner", 
              "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier", 
              "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound", 
              "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber", 
              "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo", 
              "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond", 
              "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher", 
              "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone", 
              "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle", 
              "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet", 
              "Wire-Haired_Fox_Terrier"]

class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super().__init__()
        self.device = device
        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features


num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)

checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])

# evaluation mode
model.eval()

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)


def get_akc_breeds_link():
    return "https://www.akc.org/dog-breeds/"

# def predict(image):
#     if image is None:
#         return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
    
#     try:
#         image_tensor = preprocess_image(image)
#         with torch.no_grad():
#             output = model(image_tensor)
#             logits = output[0] if isinstance(output, tuple) else output

#             probabilities = F.softmax(logits, dim=1)
#             topk_probs, topk_indices = torch.topk(probabilities, k=3)

#             top1_prob = topk_probs[0][0].item()
#             topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
#             topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]

#             if top1_prob >= 0.5:
#                 breed = topk_breeds[0]
#                 description = get_dog_description(breed)
#                 return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

#             elif top1_prob < 0.2:
#                 return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
#                         gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
#             else:
#                 explanation = (
#                     f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
#                     f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
#                     f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
#                     f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
#                     "Click on a button to view more information about the breed."
#                 )
#                 return explanation, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")

#     except Exception as e:
#         return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


# def format_description(description, breed):
#     if isinstance(description, dict):
#         formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
#     else:
#         formatted_description = description

#     akc_link = get_akc_breeds_link()
#     formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."

#     disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
#                   "You may need to search for the specific breed on that page. "
#                   "I am not responsible for the content on external sites. "
#                   "Please refer to the AKC's terms of use and privacy policy.*")
#     formatted_description += disclaimer

#     return formatted_description

# def show_details(breed):
#     breed_name = breed.split("More about ")[-1]
#     description = get_dog_description(breed_name)
#     return format_description(description, breed_name)

# with gr.Blocks(css="""
#     .container {
#         max-width: 900px;
#         margin: 0 auto;
#         padding: 20px;
#         background-color: rgba(255, 255, 255, 0.9);
#         border-radius: 15px;
#         box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
#     }
#     .gr-form { display: flex; flex-direction: column; align-items: center; }
#     .gr-box { width: 100%; max-width: 500px; }
#     .output-markdown, .output-image {
#         margin-top: 20px;
#         padding: 15px;
#         background-color: #f5f5f5;
#         border-radius: 10px;
#     }
#     .examples {
#         display: flex;
#         justify-content: center;
#         flex-wrap: wrap;
#         gap: 10px;
#         margin-top: 20px;
#     }
#     .examples img {
#         width: 100px;
#         height: 100px;
#         object-fit: cover;
#     }
#     """) as iface:

#     gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
#     gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
    
#     with gr.Row():
#         input_image = gr.Image(label="Upload a dog image", type="numpy")
#         output = gr.Markdown(label="Prediction Results")
    
#     with gr.Row():
#         btn1 = gr.Button("View More 1", visible=False)
#         btn2 = gr.Button("View More 2", visible=False)
#         btn3 = gr.Button("View More 3", visible=False)

#     input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
    
#     btn1.click(show_details, inputs=btn1, outputs=output)
#     btn2.click(show_details, inputs=btn2, outputs=output)
#     btn3.click(show_details, inputs=btn3, outputs=output)

#     gr.Examples(
#         examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
#         inputs=input_image
#     )

#     gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')

# # launch the program
# if __name__ == "__main__":
#     iface.launch()

def format_description(description, breed):
    if isinstance(description, dict):
        formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
    else:
        formatted_description = description

    formatted_description = f"""
**Breed**: {breed}

{formatted_description}

**Want to learn more about dog breeds?**
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.

*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. 
You may need to search for the specific breed on that page. 
I am not responsible for the content on external sites. 
Please refer to the AKC's terms of use and privacy policy.*
"""
    return formatted_description

def predict_single_dog(image):
    image_tensor = preprocess_image(image)
    with torch.no_grad():
        output = model(image_tensor)
        logits = output[0] if isinstance(output, tuple) else output
        probabilities = F.softmax(logits, dim=1)
        topk_probs, topk_indices = torch.topk(probabilities, k=3)
        top1_prob = topk_probs[0][0].item()
        topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
        topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
    return top1_prob, topk_breeds, topk_probs_percent

def detect_multiple_dogs(image):
    results = model_yolo(image)
    dogs = []
    for result in results:
        for box in result.boxes:
            if box.cls == 16:  # COCO dataset class for dog is 16
                xyxy = box.xyxy[0].tolist()
                confidence = box.conf.item()
                cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
                dogs.append((cropped_image, confidence, xyxy))
    return dogs

def predict(image):
    if image is None:
        return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        # Always start with single dog prediction
        top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(image)
        
        # Check if we need to use YOLO for multiple dogs
        dogs = detect_multiple_dogs(image)
        
        if len(dogs) <= 1:  # Single dog or no dog detected
            breed = topk_breeds[0]
            description = get_dog_description(breed)
            formatted_description = format_description(description, breed)
            
            if top1_prob >= 0.5:
                return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
            elif 0.2 <= top1_prob < 0.5:
                explanation = f"""
Detected with moderate confidence. Here are the top 3 possible breeds:

1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})

Click on a button below to view more information about each breed.
"""
                return explanation, image, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
            else:
                return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        
        # Multiple dogs detected, process each dog
        explanations = []
        visible_buttons = []
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)

        for i, (cropped_image, _, box) in enumerate(dogs):
            top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(cropped_image)

            draw.rectangle(box, outline="red", width=3)
            draw.text((box[0], box[1]), f"Dog {i+1}", fill="red")

            if top1_prob >= 0.5:
                breed = topk_breeds[0]
                description = get_dog_description(breed)
                explanations.append(f"Dog {i+1}:\n{format_description(description, breed)}")
            elif 0.2 <= top1_prob < 0.5:
                explanation = f"""
Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:

1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
"""
                explanations.append(explanation)
                visible_buttons.extend([f"More about {topk_breeds[0]}", f"More about {topk_breeds[1]}", f"More about {topk_breeds[2]}"])
            else:
                explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")

        final_explanation = "\n\n".join(explanations)
        return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=True, value=visible_buttons[1] if len(visible_buttons) >= 2 else ""), gr.update(visible=True, value=visible_buttons[2] if len(visible_buttons) >= 3 else "")

    except Exception as e:
        return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)

def show_details(breed):
    breed_name = breed.split("More about ")[-1]
    description = get_dog_description(breed_name)
    return format_description(description, breed_name)

# Gradio interface setup
with gr.Blocks(css="""
    .container { max-width: 900px; margin: auto; padding: 20px; }
    .gr-box { border-radius: 15px; }
    .output-markdown { margin-top: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 10px; }
    .examples { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-top: 20px; }
    .examples img { width: 100px; height: 100px; object-fit: cover; }
    """) as iface:

    gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
    gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
    
    with gr.Row():
        input_image = gr.Image(label="Upload a dog image", type="pil")
        output_image = gr.Image(label="Annotated Image")
    
    output = gr.Markdown(label="Prediction Results")
    
    with gr.Row():
        btn1 = gr.Button("View More 1", visible=False)
        btn2 = gr.Button("View More 2", visible=False)
        btn3 = gr.Button("View More 3", visible=False)

    input_image.change(predict, inputs=input_image, outputs=[output, output_image, btn1, btn2, btn3])
    
    btn1.click(show_details, inputs=btn1, outputs=output)
    btn2.click(show_details, inputs=btn2, outputs=output)
    btn3.click(show_details, inputs=btn3, outputs=output)

    gr.Examples(
        examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
        inputs=input_image
    )

    gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed_Classifier">Dog Breed Classifier</a>')

if __name__ == "__main__":
    iface.launch()