File size: 37,836 Bytes
d161865
 
 
8d47738
d161865
 
 
 
 
 
 
8d47738
 
 
 
 
 
 
 
 
bc5384b
 
 
 
 
 
 
 
 
73293d1
bc5384b
 
 
 
73293d1
d161865
 
73293d1
d161865
 
 
73293d1
 
 
 
 
d161865
 
 
 
73293d1
d161865
73293d1
 
 
 
d161865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73293d1
 
d161865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d47738
bc5384b
d161865
 
73293d1
 
d161865
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
import torch
import re
import numpy as np
import spaces
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import dog_data
from scoring_calculation_system import UserPreferences
from sentence_transformers import SentenceTransformer, util
from functools import wraps

def gpu_init_wrapper(func):
    @spaces.GPU
    @wraps(func)
    def wrapper(*args, **kwargs):
        return func(*args, **kwargs)
    return wrapper

def safe_prediction(func):
    """錯誤處理裝飾器,提供 GPU 到 CPU 的降級機制"""
    @wraps(func)
    def wrapper(*args, **kwargs):
        try:
            return func(*args, **kwargs)
        except RuntimeError as e:
            if "CUDA" in str(e):
                print("GPU 操作失敗,嘗試使用 CPU")
                return func(*args, **kwargs)
            raise
    return wrapper

class SmartBreedMatcher:

    def __init__(self, dog_data: List[Tuple]):
        self.dog_data = dog_data
        self.model = None
        self._embedding_cache = {}
        self._clear_cache()

    def _initialize_model(self):
        """延遲初始化模型,只在需要時才創建"""
        if self.model is None:
            self.model = SentenceTransformer('all-mpnet-base-v2')

    def _clear_cache(self):
        self._embedding_cache = {}


    @spaces.GPU
    def _get_cached_embedding(self, text: str) -> torch.Tensor:
        """使用 GPU 裝飾器確保在正確的時機初始化 CUDA"""
        if self.model is None:
            self._initialize_model()
            
        if text not in self._embedding_cache:
            self._embedding_cache[text] = self.model.encode(text)
        return self._embedding_cache[text]

    def _categorize_breeds(self) -> Dict:
        """自動將狗品種分類"""
        categories = {
            'working_dogs': [],
            'herding_dogs': [],
            'hunting_dogs': [],
            'companion_dogs': [],
            'guard_dogs': []
        }

        for breed_info in self.dog_data:
            description = breed_info[9].lower()
            temperament = breed_info[4].lower()

            # 根據描述和性格特徵自動分類
            if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
                categories['herding_dogs'].append(breed_info[1])
            elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
                categories['hunting_dogs'].append(breed_info[1])
            elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
                categories['companion_dogs'].append(breed_info[1])
            elif any(word in description for word in ['guard', 'protection', 'watchdog']):
                categories['guard_dogs'].append(breed_info[1])
            elif any(word in description for word in ['working', 'draft', 'cart']):
                categories['working_dogs'].append(breed_info[1])

        return categories

    def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
        """
        找出與指定品種最相似的其他品種

        Args:
            breed_name: 目標品種名稱
            top_n: 返回的相似品種數量

        Returns:
            List[Tuple[str, float]]: 相似品種列表,包含品種名稱和相似度分數
        """
        try:
            if self.model is None:
                self._initialize_model()
            target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
            if not target_breed:
                return []

            # 獲取完整的目標品種特徵
            target_features = {
                'breed_name': target_breed[1],
                'size': target_breed[2],
                'temperament': target_breed[4],
                'exercise': target_breed[7],
                'grooming': target_breed[8],
                'description': target_breed[9],
                'good_with_children': target_breed[6]  # 添加這個特徵
            }

            similarities = []
            for breed in self.dog_data:
                if breed[1] != breed_name:
                    breed_features = {
                        'breed_name': breed[1],
                        'size': breed[2],
                        'temperament': breed[4],
                        'exercise': breed[7],
                        'grooming': breed[8],
                        'description': breed[9],
                        'good_with_children': breed[6]  # 添加這個特徵
                    }

                    try:
                        similarity_score = self._calculate_breed_similarity(target_features, breed_features)
                        # 確保分數在有效範圍內
                        similarity_score = min(1.0, max(0.0, similarity_score))
                        similarities.append((breed[1], similarity_score))
                    except Exception as e:
                        print(f"Error calculating similarity for {breed[1]}: {str(e)}")
                        continue

            # 根據相似度排序並返回前N個
            return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]

        except Exception as e:
            print(f"Error in find_similar_breeds: {str(e)}")
            return []


    def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict, weights: Dict[str, float]) -> float:
        try:
            # 1. 基礎相似度計算
            size_similarity = self._calculate_size_similarity_enhanced(
                breed1_features.get('size', 'Medium'),
                breed2_features.get('size', 'Medium'),
                breed2_features.get('description', '')
            )

            exercise_similarity = self._calculate_exercise_similarity_enhanced(
                breed1_features.get('exercise', 'Moderate'),
                breed2_features.get('exercise', 'Moderate')
            )

            # 性格相似度
            temp1_embedding = self._get_cached_embedding(breed1_features.get('temperament', ''))
            temp2_embedding = self._get_cached_embedding(breed2_features.get('temperament', ''))
            temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))

            # 其他相似度
            grooming_similarity = self._calculate_grooming_similarity(
                breed1_features.get('breed_name', ''),
                breed2_features.get('breed_name', '')
            )

            health_similarity = self._calculate_health_score_similarity(
                breed1_features.get('breed_name', ''),
                breed2_features.get('breed_name', '')
            )

            noise_similarity = self._calculate_noise_similarity(
                breed1_features.get('breed_name', ''),
                breed2_features.get('breed_name', '')
            )

            # 2. 關鍵特徵評分
            feature_scores = {}
            for feature, similarity in {
                'size': size_similarity,
                'exercise': exercise_similarity,
                'temperament': temperament_similarity,
                'grooming': grooming_similarity,
                'health': health_similarity,
                'noise': noise_similarity
            }.items():
                # 根據權重調整每個特徵分數
                importance = weights.get(feature, 0.1)
                if importance > 0.3:  # 高權重特徵
                    if similarity < 0.5:  # 若關鍵特徵匹配度低
                        feature_scores[feature] = similarity * 0.5  # 大幅降低分數
                    else:
                        feature_scores[feature] = similarity * 1.2  # 提高匹配度好的分數
                else:  # 一般特徵
                    feature_scores[feature] = similarity

            # 3. 計算最終相似度
            weighted_sum = 0
            weight_sum = 0
            for feature, score in feature_scores.items():
                feature_weight = weights.get(feature, 0.1)
                weighted_sum += score * feature_weight
                weight_sum += feature_weight

            final_similarity = weighted_sum / weight_sum if weight_sum > 0 else 0.5

            return min(1.0, max(0.2, final_similarity))  # 設定最低分數為0.2

        except Exception as e:
            print(f"Error in calculate_breed_similarity: {str(e)}")
            return 0.5

    def get_breed_characteristics_score(self, breed_features: Dict, description: str) -> float:
        score = 1.0
        description_lower = description.lower()
        breed_score_multipliers = []

        # 運動需求評估
        exercise_needs = breed_features.get('exercise', 'Moderate')
        exercise_keywords = ['active', 'running', 'energetic', 'athletic']
        if any(keyword in description_lower for keyword in exercise_keywords):
            multipliers = {
                'Very High': 1.5,
                'High': 1.3,
                'Moderate': 0.7,
                'Low': 0.4
            }
            breed_score_multipliers.append(multipliers.get(exercise_needs, 1.0))

        # 體型評估
        size = breed_features.get('size', 'Medium')
        if 'apartment' in description_lower:
            size_multipliers = {
                'Giant': 0.3,
                'Large': 0.6,
                'Medium-Large': 0.8,
                'Medium': 1.4,
                'Small': 1.0,
                'Tiny': 0.9
            }
            breed_score_multipliers.append(size_multipliers.get(size, 1.0))
        elif 'house' in description_lower:
            size_multipliers = {
                'Giant': 0.8,
                'Large': 1.2,
                'Medium-Large': 1.3,
                'Medium': 1.2,
                'Small': 0.9,
                'Tiny': 0.7
            }
            breed_score_multipliers.append(size_multipliers.get(size, 1.0))

        # 家庭適應性評估
        if any(keyword in description_lower for keyword in ['family', 'children', 'kids']):
            good_with_children = breed_features.get('good_with_children', False)
            breed_score_multipliers.append(1.3 if good_with_children else 0.6)

        # 噪音評估
        if 'quiet' in description_lower:
            noise_level = breed_features.get('noise_level', 'Moderate')
            noise_multipliers = {
                'Low': 1.3,
                'Moderate': 0.9,
                'High': 0.5
            }
            breed_score_multipliers.append(noise_multipliers.get(noise_level, 1.0))

        # 應用所有乘數
        for multiplier in breed_score_multipliers:
            score *= multiplier

        # 確保分數在合理範圍內
        return min(1.5, max(0.3, score))

    def _calculate_size_similarity_enhanced(self, size1: str, size2: str, description: str) -> float:
        """
        增強版尺寸相似度計算
        """
        try:
            # 更細緻的尺寸映射
            size_map = {
                'Tiny': 0,
                'Small': 1,
                'Small-Medium': 2,
                'Medium': 3,
                'Medium-Large': 4,
                'Large': 5,
                'Giant': 6
            }

            # 標準化並獲取數值
            value1 = size_map.get(self._normalize_size(size1), 3)
            value2 = size_map.get(self._normalize_size(size2), 3)

            # 基礎相似度計算
            base_similarity = 1.0 - (abs(value1 - value2) / 6.0)

            # 環境適應性調整
            if 'apartment' in description.lower():
                if size2 in ['Large', 'Giant']:
                    base_similarity *= 0.7  # 大型犬在公寓降低相似度
                elif size2 in ['Medium', 'Medium-Large']:
                    base_similarity *= 1.2  # 中型犬更適合
                elif size2 in ['Small', 'Tiny']:
                    base_similarity *= 0.8  # 過小的狗也不是最佳選擇

            return min(1.0, base_similarity)
        except Exception as e:
            print(f"Error in calculate_size_similarity_enhanced: {str(e)}")
            return 0.5

    def _normalize_size(self, size: str) -> str:
        """
        標準化犬種尺寸分類

        Args:
            size: 原始尺寸描述

        Returns:
            str: 標準化後的尺寸類別
        """
        try:
            size = size.lower()
            if 'tiny' in size:
                return 'Tiny'
            elif 'small' in size and 'medium' in size:
                return 'Small-Medium'
            elif 'small' in size:
                return 'Small'
            elif 'medium' in size and 'large' in size:
                return 'Medium-Large'
            elif 'medium' in size:
                return 'Medium'
            elif 'giant' in size:
                return 'Giant'
            elif 'large' in size:
                return 'Large'
            return 'Medium'  # 默認為 Medium
        except Exception as e:
            print(f"Error in normalize_size: {str(e)}")
            return 'Medium'

    def _calculate_exercise_similarity_enhanced(self, exercise1: str, exercise2: str) -> float:
        try:
            exercise_values = {
                'Very High': 4,
                'High': 3,
                'Moderate': 2,
                'Low': 1
            }

            value1 = exercise_values.get(exercise1, 2)
            value2 = exercise_values.get(exercise2, 2)

            # 計算差異
            diff = abs(value1 - value2)

            if diff == 0:
                return 1.0
            elif diff == 1:
                return 0.7
            elif diff == 2:
                return 0.4
            else:
                return 0.2

        except Exception as e:
            print(f"Error in calculate_exercise_similarity_enhanced: {str(e)}")
            return 0.5

    def _calculate_grooming_similarity(self, breed1: str, breed2: str) -> float:
        """
        計算美容需求相似度

        Args:
            breed1: 第一個品種名稱
            breed2: 第二個品種名稱

        Returns:
            float: 相似度分數 (0-1)
        """
        try:
            grooming_map = {
                'Low': 1,
                'Moderate': 2,
                'High': 3
            }

            # 從dog_data中獲取美容需求
            breed1_info = next((dog for dog in self.dog_data if dog[1] == breed1), None)
            breed2_info = next((dog for dog in self.dog_data if dog[1] == breed2), None)

            if not breed1_info or not breed2_info:
                return 0.5  # 數據缺失時返回中等相似度

            grooming1 = breed1_info[8]  # Grooming_Needs index
            grooming2 = breed2_info[8]

            # 獲取數值,默認為 Moderate
            value1 = grooming_map.get(grooming1, 2)
            value2 = grooming_map.get(grooming2, 2)

            # 基礎相似度計算
            base_similarity = 1.0 - (abs(value1 - value2) / 2.0)

            # 美容需求調整
            if grooming2 == 'Moderate':
                base_similarity *= 1.1  # 中等美容需求略微加分
            elif grooming2 == 'High':
                base_similarity *= 0.9  # 高美容需求略微降分

            return min(1.0, base_similarity)
        except Exception as e:
            print(f"Error in calculate_grooming_similarity: {str(e)}")
            return 0.5

    def _calculate_health_score_similarity(self, breed1: str, breed2: str) -> float:
        """
        計算兩個品種的健康評分相似度
        """
        try:
            score1 = self._calculate_health_score(breed1)
            score2 = self._calculate_health_score(breed2)
            return 1.0 - abs(score1 - score2)
        except Exception as e:
            print(f"Error in calculate_health_score_similarity: {str(e)}")
            return 0.5

    def _calculate_health_score(self, breed_name: str) -> float:
        """
        計算品種的健康評分

        Args:
            breed_name: 品種名稱

        Returns:
            float: 健康評分 (0-1)
        """
        try:
            if breed_name not in breed_health_info:
                return 0.5

            health_notes = breed_health_info[breed_name]['health_notes'].lower()

            # 嚴重健康問題
            severe_conditions = [
                'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
                'bloat', 'progressive', 'syndrome'
            ]

            # 中等健康問題
            moderate_conditions = [
                'allergies', 'infections', 'thyroid', 'luxation',
                'skin problems', 'ear'
            ]

            # 計算問題數量
            severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
            moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)

            # 基礎健康評分
            health_score = 1.0
            health_score -= (severe_count * 0.15)  # 嚴重問題扣分更多
            health_score -= (moderate_count * 0.05)  # 中等問題扣分較少

            # 確保評分在合理範圍內
            return max(0.3, min(1.0, health_score))
        except Exception as e:
            print(f"Error in calculate_health_score: {str(e)}")
            return 0.5


    def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
        """計算兩個品種的噪音相似度"""
        noise_levels = {
            'Low': 1,
            'Moderate': 2,
            'High': 3,
            'Unknown': 2  # 默認為中等
        }

        noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
        noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')

        # 獲取數值級別
        level1 = noise_levels.get(noise1, 2)
        level2 = noise_levels.get(noise2, 2)

        # 計算差異並歸一化
        difference = abs(level1 - level2)
        similarity = 1.0 - (difference / 2)  # 最大差異是2,所以除以2來歸一化

        return similarity

    # bonus score zone
    def _calculate_size_bonus(self, size: str, living_space: str) -> float:
        """
        計算尺寸匹配的獎勵分數

        Args:
            size: 品種尺寸
            living_space: 居住空間類型

        Returns:
            float: 獎勵分數 (-0.25 到 0.15)
        """
        try:
            if living_space == "apartment":
                size_scores = {
                    'Tiny': -0.15,
                    'Small': 0.10,
                    'Medium': 0.15,
                    'Large': 0.10,
                    'Giant': -0.30
                }
            else:  # house
                size_scores = {
                    'Tiny': -0.10,
                    'Small': 0.05,
                    'Medium': 0.15,
                    'Large': 0.15,
                    'Giant': -0.15
                }
            return size_scores.get(size, 0.0)
        except Exception as e:
            print(f"Error in calculate_size_bonus: {str(e)}")
            return 0.0

    def _calculate_exercise_bonus(self, exercise_needs: str, exercise_time: int) -> float:
        """
        計算運動需求匹配的獎勵分數

        Args:
            exercise_needs: 品種運動需求
            exercise_time: 用戶可提供的運動時間(分鐘)

        Returns:
            float: 獎勵分數 (-0.20 到 0.20)
        """
        try:
            if exercise_time >= 120:  # 高運動量需求
                exercise_scores = {
                    'Low': -0.30,
                    'Moderate': -0.10,
                    'High': 0.15,
                    'Very High': 0.30
                }
            elif exercise_time >= 60:  # 中等運動量需求
                exercise_scores = {
                    'Low': -0.05,
                    'Moderate': 0.15,
                    'High': 0.05,
                    'Very High': -0.10
                }
            else:  # 低運動量需求
                exercise_scores = {
                    'Low': 0.15,
                    'Moderate': 0.05,
                    'High': -0.15,
                    'Very High': -0.20
                }
            return exercise_scores.get(exercise_needs, 0.0)
        except Exception as e:
            print(f"Error in calculate_exercise_bonus: {str(e)}")
            return 0.0

    def _calculate_grooming_bonus(self, grooming: str, commitment: str) -> float:
        """
        計算美容需求匹配的獎勵分數

        Args:
            grooming: 品種美容需求
            commitment: 用戶美容投入程度

        Returns:
            float: 獎勵分數 (-0.15 到 0.10)
        """
        try:
            if commitment == "high":
                grooming_scores = {
                    'Low': -0.05,
                    'Moderate': 0.05,
                    'High': 0.10
                }
            else:  # medium or low commitment
                grooming_scores = {
                    'Low': 0.10,
                    'Moderate': 0.05,
                    'High': -0.20
                }
            return grooming_scores.get(grooming, 0.0)
        except Exception as e:
            print(f"Error in calculate_grooming_bonus: {str(e)}")
            return 0.0

    def _calculate_family_bonus(self, breed_info: Dict) -> float:
        """
        計算家庭適應性的獎勵分數

        Args:
            breed_info: 品種信息字典

        Returns:
            float: 獎勵分數 (0 到 0.20)
        """
        try:
            bonus = 0.0
            temperament = breed_info.get('Temperament', '').lower()
            good_with_children = breed_info.get('Good_With_Children', False)

            if good_with_children:
                bonus += 0.20
            if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
                bonus += 0.10

            return min(0.20, bonus)
        except Exception as e:
            print(f"Error in calculate_family_bonus: {str(e)}")
            return 0.0


    def _detect_scenario(self, description: str) -> Dict[str, float]:
        """
        檢測場景並返回對應權重
        """
        # 基礎場景定義
        scenarios = {
            'athletic': {
                'keywords': ['active', 'exercise', 'running', 'athletic', 'energetic', 'sports'],
                'weights': {
                    'exercise': 0.40,
                    'size': 0.25,
                    'temperament': 0.20,
                    'health': 0.15
                }
            },
            'apartment': {
                'keywords': ['apartment', 'flat', 'condo'],
                'weights': {
                    'size': 0.35,
                    'noise': 0.30,
                    'exercise': 0.20,
                    'temperament': 0.15
                }
            },
            'family': {
                'keywords': ['family', 'children', 'kids', 'friendly'],
                'weights': {
                    'temperament': 0.35,
                    'safety': 0.30,
                    'noise': 0.20,
                    'exercise': 0.15
                }
            },
            'novice': {
                'keywords': ['first time', 'beginner', 'new owner', 'inexperienced'],
                'weights': {
                    'trainability': 0.35,
                    'temperament': 0.30,
                    'care_level': 0.20,
                    'health': 0.15
                }
            }
        }

        # 檢測匹配的場景
        matched_scenarios = []
        for scenario, config in scenarios.items():
            if any(keyword in description.lower() for keyword in config['keywords']):
                matched_scenarios.append(scenario)

        # 默認權重
        default_weights = {
            'exercise': 0.20,
            'size': 0.20,
            'temperament': 0.20,
            'health': 0.15,
            'noise': 0.10,
            'grooming': 0.10,
            'trainability': 0.05
        }

        # 如果沒有匹配場景,返回默認權重
        if not matched_scenarios:
            return default_weights

        # 合併匹配場景的權重
        final_weights = default_weights.copy()
        for scenario in matched_scenarios:
            scenario_weights = scenarios[scenario]['weights']
            for feature, weight in scenario_weights.items():
                if feature in final_weights:
                    final_weights[feature] = max(final_weights[feature], weight)

        return final_weights


    def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
                          smart_score: float, is_preferred: bool,
                          similarity_score: float = 0.0,
                          characteristics_score: float = 1.0,
                          weights: Dict[str, float] = None) -> Dict:
        try:
            # 使用傳入的權重或默認權重
            if weights is None:
                weights = {
                    'base': 0.35,
                    'smart': 0.35,
                    'bonus': 0.15,
                    'characteristics': 0.15
                }

            # 確保 base_scores 包含所有必要的鍵
            base_scores = {
                'overall': base_scores.get('overall', smart_score),
                'size': base_scores.get('size', 0.0),
                'exercise': base_scores.get('exercise', 0.0),
                'temperament': base_scores.get('temperament', 0.0),
                'grooming': base_scores.get('grooming', 0.0),
                'health': base_scores.get('health', 0.0),
                'noise': base_scores.get('noise', 0.0)
            }

            # 計算基礎分數
            base_score = base_scores['overall']

            # 計算獎勵分數
            bonus_score = 0.0
            if is_preferred:
                bonus_score = 0.95
            elif similarity_score > 0:
                bonus_score = min(0.8, similarity_score) * 0.95

            # 特徵匹配度調整
            if characteristics_score < 0.5:
                base_score *= 0.7  # 降低基礎分數
                smart_score *= 0.7  # 降低智能匹配分數

            # 計算最終分數
            final_score = (
                base_score * weights.get('base', 0.35) +
                smart_score * weights.get('smart', 0.35) +
                bonus_score * weights.get('bonus', 0.15) +
                characteristics_score * weights.get('characteristics', 0.15)
            )

            # 確保分數在合理範圍內
            final_score = min(1.0, max(0.3, final_score))

            return {
                'final_score': round(final_score, 4),
                'base_score': round(base_score, 4),
                'smart_score': round(smart_score, 4),
                'bonus_score': round(bonus_score, 4),
                'characteristics_score': round(characteristics_score, 4),
                'detailed_scores': base_scores
            }

        except Exception as e:
            print(f"Error in calculate_final_scores: {str(e)}")
            return {
                'final_score': 0.5,
                'base_score': 0.5,
                'smart_score': 0.5,
                'bonus_score': 0.0,
                'characteristics_score': 0.5,
                'detailed_scores': {
                    'overall': 0.5,
                    'size': 0.5,
                    'exercise': 0.5,
                    'temperament': 0.5,
                    'grooming': 0.5,
                    'health': 0.5,
                    'noise': 0.5
                }
            }

    def _general_matching(self, description: str, weights: Dict[str, float], top_n: int = 10) -> List[Dict]:
        """基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
        try:
            matches = []
            desc_embedding = self._get_cached_embedding(description)

            for breed in self.dog_data:
                breed_name = breed[1]
                breed_features = self._extract_breed_features(breed)
                breed_description = breed[9]
                temperament = breed[4]

                breed_desc_embedding = self._get_cached_embedding(breed_description)
                breed_temp_embedding = self._get_cached_embedding(temperament)

                desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
                temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))

                noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
                health_score = self._calculate_health_score(breed_name)
                health_similarity = 1.0 - abs(health_score - 0.8)

                # 使用傳入的權重
                final_score = (
                    desc_similarity * weights.get('description', 0.35) +
                    temp_similarity * weights.get('temperament', 0.25) +
                    noise_similarity * weights.get('noise', 0.2) +
                    health_similarity * weights.get('health', 0.2)
                )

                # 計算特徵分數
                characteristics_score = self.get_breed_characteristics_score(breed_features, description)

                # 構建完整的 scores 字典
                scores = {
                    'overall': final_score,
                    'size': breed_features.get('size_score', 0.0),
                    'exercise': breed_features.get('exercise_score', 0.0),
                    'temperament': temp_similarity,
                    'grooming': breed_features.get('grooming_score', 0.0),
                    'health': health_score,
                    'noise': noise_similarity
                }

                matches.append({
                    'breed': breed_name,
                    'scores': scores,
                    'final_score': final_score,
                    'base_score': final_score,
                    'characteristics_score': characteristics_score,
                    'bonus_score': 0.0,
                    'is_preferred': False,
                    'similarity': final_score,
                    'health_score': health_score,
                    'reason': "Matched based on description and characteristics"
                })

            return sorted(matches, key=lambda x: (-x['characteristics_score'], -x['final_score']))[:top_n]

        except Exception as e:
            print(f"Error in _general_matching: {str(e)}")
            return []


    def _detect_breed_preference(self, description: str) -> Optional[str]:
        """檢測用戶是否提到特定品種"""
        description_lower = f" {description.lower()} "

        for breed_info in self.dog_data:
            breed_name = breed_info[1]
            normalized_breed = breed_name.lower().replace('_', ' ')

            pattern = rf"\b{re.escape(normalized_breed)}\b"

            if re.search(pattern, description_lower):
                return breed_name

        return None

    def _extract_breed_features(self, breed_info: Tuple) -> Dict:
        """
        從品種信息中提取特徵

        Args:
            breed_info: 品種信息元組

        Returns:
            Dict: 包含品種特徵的字典
        """
        try:
            return {
                'breed_name': breed_info[1],
                'size': breed_info[2],
                'temperament': breed_info[4],
                'exercise': breed_info[7],
                'grooming': breed_info[8],
                'description': breed_info[9],
                'good_with_children': breed_info[6]
            }
        except Exception as e:
            print(f"Error in extract_breed_features: {str(e)}")
            return {
                'breed_name': '',
                'size': 'Medium',
                'temperament': '',
                'exercise': 'Moderate',
                'grooming': 'Moderate',
                'description': '',
                'good_with_children': False
            }

    @gpu_init_wrapper
    @safe_prediction
    def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
        try:
            if self.model is None:
                self._initialize_model()
            # 獲取場景權重
            weights = self._detect_scenario(description)
            matches = []
            preferred_breed = self._detect_breed_preference(description)

            # 處理用戶明確提到的品種
            if preferred_breed:
                breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
                if breed_info:
                    breed_features = self._extract_breed_features(breed_info)
                    base_similarity = self._calculate_breed_similarity(breed_features, breed_features, weights)

                    # 計算特徵分數
                    characteristics_score = self.get_breed_characteristics_score(breed_features, description)

                    # 計算最終分數
                    scores = self._calculate_final_scores(
                        preferred_breed,
                        {'overall': base_similarity},
                        smart_score=base_similarity,
                        is_preferred=True,
                        similarity_score=1.0,
                        characteristics_score=characteristics_score,
                        weights=weights
                    )

                    matches.append({
                        'breed': preferred_breed,
                        'scores': scores['detailed_scores'],
                        'final_score': scores['final_score'],
                        'base_score': scores['base_score'],
                        'bonus_score': scores['bonus_score'],
                        'characteristics_score': characteristics_score,
                        'is_preferred': True,
                        'priority': 1,
                        'health_score': self._calculate_health_score(preferred_breed),
                        'reason': "Directly matched your preferred breed"
                    })

                    # 尋找相似品種
                    similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n-1)
                    for breed_name, similarity in similar_breeds:
                        if breed_name != preferred_breed:
                            breed_info = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
                            if breed_info:
                                breed_features = self._extract_breed_features(breed_info)
                                characteristics_score = self.get_breed_characteristics_score(breed_features, description)

                                scores = self._calculate_final_scores(
                                    breed_name,
                                    {'overall': similarity},
                                    smart_score=similarity,
                                    is_preferred=False,
                                    similarity_score=similarity,
                                    characteristics_score=characteristics_score,
                                    weights=weights
                                )

                                if scores['final_score'] >= 0.4:  # 設定最低分數門檻
                                    matches.append({
                                        'breed': breed_name,
                                        'scores': scores['detailed_scores'],
                                        'final_score': scores['final_score'],
                                        'base_score': scores['base_score'],
                                        'bonus_score': scores['bonus_score'],
                                        'characteristics_score': characteristics_score,
                                        'is_preferred': False,
                                        'priority': 2,
                                        'health_score': self._calculate_health_score(breed_name),
                                        'reason': f"Similar to {preferred_breed}"
                                    })

            # 如果沒有找到偏好品種或需要更多匹配
            if len(matches) < top_n:
                general_matches = self._general_matching(description, weights, top_n - len(matches))
                for match in general_matches:
                    if match['breed'] not in [m['breed'] for m in matches]:
                        match['priority'] = 3
                        if match['final_score'] >= 0.4:  # 分數門檻
                            matches.append(match)

            # 最終排序
            matches.sort(key=lambda x: (
                -x.get('characteristics_score', 0),  # 首先考慮特徵匹配度
                -x.get('final_score', 0),           # 然後是總分
                -x.get('base_score', 0),            # 最後是基礎分數
                x.get('breed', '')                  # 字母順序
            ))

            # 取前N個結果
            final_matches = matches[:top_n]

            # 更新排名
            for i, match in enumerate(final_matches, 1):
                match['rank'] = i

            return final_matches

        except Exception as e:
            print(f"Error in match_user_preference: {str(e)}")
            return []