Spaces:
Running
on
Zero
Running
on
Zero
File size: 37,230 Bytes
d161865 47f974a d161865 e448175 d161865 bce5fc2 d161865 bce5fc2 d161865 bce5fc2 d161865 bce5fc2 d161865 bce5fc2 d161865 dd7fe39 d161865 551346d d161865 551346d d161865 468e50e d161865 a4f7773 533532a 34ac181 533532a d161865 43143f4 d161865 533532a d161865 533532a 34ac181 533532a d161865 533532a d161865 4180a1b d161865 4180a1b d161865 551346d d161865 551346d d161865 551346d d161865 551346d d161865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
import sqlite3
import gradio as gr
from dog_database import get_dog_description, dog_data
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from search_history import create_history_tab, create_history_component
from smart_breed_matcher import SmartBreedMatcher
from description_search_ui import create_description_search_tab
def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
with gr.TabItem("Breed Recommendation"):
with gr.Tabs():
with gr.Tab("Find by Criteria"):
gr.HTML("""
<div style='
text-align: center;
padding: 20px 0;
margin: 15px 0;
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1));
border-radius: 10px;
'>
<p style='
font-size: 1.2em;
margin: 0;
padding: 0 20px;
line-height: 1.5;
background: linear-gradient(90deg, #4299e1, #48bb78);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
font-weight: 600;
'>
Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!
</p>
</div>
""")
with gr.Row():
with gr.Column():
living_space = gr.Radio(
choices=["apartment", "house_small", "house_large"],
label="What type of living space do you have?",
info="Choose your current living situation",
value="apartment"
)
yard_access = gr.Radio(
choices=["no_yard", "shared_yard", "private_yard"],
label="Yard Access Type",
info="Available outdoor space",
value="no_yard"
)
exercise_time = gr.Slider(
minimum=0,
maximum=180,
value=60,
label="Daily exercise time (minutes)",
info="Consider walks, play time, and training"
)
exercise_type = gr.Radio(
choices=["light_walks", "moderate_activity", "active_training"],
label="Exercise Style",
info="What kind of activities do you prefer?",
value="moderate_activity"
)
grooming_commitment = gr.Radio(
choices=["low", "medium", "high"],
label="Grooming commitment level",
info="Low: monthly, Medium: weekly, High: daily",
value="medium"
)
with gr.Column():
experience_level = gr.Radio(
choices=["beginner", "intermediate", "advanced"],
label="Dog ownership experience",
info="Be honest - this helps find the right match",
value="beginner"
)
time_availability = gr.Radio(
choices=["limited", "moderate", "flexible"],
label="Time Availability",
info="Time available for dog care daily",
value="moderate"
)
has_children = gr.Checkbox(
label="Have children at home",
info="Helps recommend child-friendly breeds"
)
children_age = gr.Radio(
choices=["toddler", "school_age", "teenager"],
label="Children's Age Group",
info="Helps match with age-appropriate breeds",
visible=False # 默認隱藏,只在has_children=True時顯示
)
noise_tolerance = gr.Radio(
choices=["low", "medium", "high"],
label="Noise tolerance level",
info="Some breeds are more vocal than others",
value="medium"
)
def update_children_age_visibility(has_children):
return gr.update(visible=has_children)
has_children.change(
fn=update_children_age_visibility,
inputs=has_children,
outputs=children_age
)
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
recommendation_output = gr.HTML(label="Breed Recommendations")
with gr.Tab("Find by Description"):
description_input, description_search_btn, description_output, loading_msg = create_description_search_tab()
def on_find_match_click(*args):
try:
user_prefs = UserPreferences(
living_space=args[0],
yard_access=args[1],
exercise_time=args[2],
exercise_type=args[3],
grooming_commitment=args[4],
experience_level=args[5],
time_availability=args[6],
has_children=args[7],
children_age=args[8] if args[7] else None,
noise_tolerance=args[9],
space_for_play=True if args[0] != "apartment" else False,
other_pets=False,
climate="moderate",
health_sensitivity="medium",
barking_acceptance=args[9]
)
recommendations = get_breed_recommendations(user_prefs, top_n=10)
history_results = [{
'breed': rec['breed'],
'rank': rec['rank'],
'overall_score': rec['final_score'],
'base_score': rec['base_score'],
'bonus_score': rec['bonus_score'],
'scores': rec['scores']
} for rec in recommendations]
history_component.save_search(
user_preferences={
'living_space': args[0],
'yard_access': args[1],
'exercise_time': args[2],
'exercise_type': args[3],
'grooming_commitment': args[4],
'experience_level': args[5],
'time_availability': args[6],
'has_children': args[7],
'children_age': args[8] if args[7] else None,
'noise_tolerance': args[9],
'search_type': 'Criteria' # 標記為條件搜索
},
results=history_results
)
return format_recommendation_html(recommendations, is_description_search=False)
except Exception as e:
print(f"Error in find match: {str(e)}")
import traceback
print(traceback.format_exc())
return "Error getting recommendations"
# def on_description_search(description: str):
# try:
# # 初始化匹配器
# matcher = SmartBreedMatcher(dog_data)
# breed_recommendations = matcher.match_user_preference(description, top_n=10)
# # 從描述中提取用戶偏好
# user_prefs = UserPreferences(
# living_space="apartment" if any(word in description.lower()
# for word in ["apartment", "flat", "condo"]) else "house_small",
# yard_access="no_yard" if any(word in description.lower()
# for word in ["apartment", "flat", "condo"]) else "private_yard",
# exercise_time=120 if any(word in description.lower()
# for word in ["active", "exercise", "running", "athletic", "high energy"]) else 60,
# exercise_type="active_training" if any(word in description.lower()
# for word in ["training", "running", "jogging", "hiking"]) else "moderate_activity",
# grooming_commitment="high" if any(word in description.lower()
# for word in ["grooming", "brush", "maintain"]) else "medium",
# experience_level="experienced" if any(word in description.lower()
# for word in ["experienced", "trained", "professional"]) else "intermediate",
# time_availability="flexible" if any(word in description.lower()
# for word in ["time", "available", "flexible", "home"]) else "moderate",
# has_children=any(word in description.lower()
# for word in ["children", "kids", "family", "child"]),
# children_age="school_age" if any(word in description.lower()
# for word in ["school", "elementary"]) else "teenager" if any(word in description.lower()
# for word in ["teen", "teenager"]) else "toddler" if any(word in description.lower()
# for word in ["baby", "toddler"]) else None,
# noise_tolerance="low" if any(word in description.lower()
# for word in ["quiet", "peaceful", "silent"]) else "medium",
# space_for_play=any(word in description.lower()
# for word in ["yard", "garden", "outdoor", "space"]),
# other_pets=any(word in description.lower()
# for word in ["other pets", "cats", "dogs"]),
# climate="moderate",
# health_sensitivity="high" if any(word in description.lower()
# for word in ["health", "medical", "sensitive"]) else "medium",
# barking_acceptance="low" if any(word in description.lower()
# for word in ["quiet", "no barking"]) else "medium"
# )
# final_recommendations = []
# for smart_rec in breed_recommendations:
# breed_name = smart_rec['breed']
# breed_info = get_dog_description(breed_name)
# if not isinstance(breed_info, dict):
# continue
# # 獲取基礎分數
# base_score = smart_rec.get('base_score', 0.7)
# similarity = smart_rec.get('similarity', 0)
# is_preferred = smart_rec.get('is_preferred', False)
# bonus_reasons = []
# bonus_score = 0
# # 1. 尺寸評估
# size = breed_info.get('Size', '')
# if size in ['Small', 'Tiny']:
# if "apartment" in description.lower():
# bonus_score += 0.05
# bonus_reasons.append("Suitable size for apartment (+5%)")
# else:
# bonus_score -= 0.25
# bonus_reasons.append("Size too small (-25%)")
# elif size == 'Medium':
# bonus_score += 0.15
# bonus_reasons.append("Ideal size (+15%)")
# elif size == 'Large':
# if "apartment" in description.lower():
# bonus_score -= 0.05
# bonus_reasons.append("May be too large for apartment (-5%)")
# elif size == 'Giant':
# bonus_score -= 0.20
# bonus_reasons.append("Size too large (-20%)")
# # 2. 運動需求評估
# exercise_needs = breed_info.get('Exercise_Needs', '')
# if any(word in description.lower() for word in ['active', 'energetic', 'running']):
# if exercise_needs in ['High', 'Very High']:
# bonus_score += 0.20
# bonus_reasons.append("Exercise needs match (+20%)")
# elif exercise_needs == 'Low':
# bonus_score -= 0.15
# bonus_reasons.append("Insufficient exercise level (-15%)")
# else:
# if exercise_needs == 'Moderate':
# bonus_score += 0.10
# bonus_reasons.append("Moderate exercise needs (+10%)")
# # 3. 美容需求評估
# grooming = breed_info.get('Grooming_Needs', '')
# if user_prefs.grooming_commitment == "high":
# if grooming == 'High':
# bonus_score += 0.10
# bonus_reasons.append("High grooming match (+10%)")
# else:
# if grooming == 'High':
# bonus_score -= 0.15
# bonus_reasons.append("High grooming needs (-15%)")
# elif grooming == 'Low':
# bonus_score += 0.10
# bonus_reasons.append("Low grooming needs (+10%)")
# # 4. 家庭適應性評估
# if user_prefs.has_children:
# if breed_info.get('Good_With_Children'):
# bonus_score += 0.15
# bonus_reasons.append("Excellent with children (+15%)")
# temperament = breed_info.get('Temperament', '').lower()
# if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
# bonus_score += 0.05
# bonus_reasons.append("Family-friendly temperament (+5%)")
# # 5. 噪音評估
# if user_prefs.noise_tolerance == "low":
# noise_level = breed_noise_info.get(breed_name, {}).get('noise_level', 'Unknown')
# if noise_level == 'High':
# bonus_score -= 0.10
# bonus_reasons.append("High noise level (-10%)")
# elif noise_level == 'Low':
# bonus_score += 0.10
# bonus_reasons.append("Low noise level (+10%)")
# # 6. 健康考慮
# if user_prefs.health_sensitivity == "high":
# health_score = smart_rec.get('health_score', 0.5)
# if health_score > 0.8:
# bonus_score += 0.10
# bonus_reasons.append("Excellent health score (+10%)")
# elif health_score < 0.5:
# bonus_score -= 0.10
# bonus_reasons.append("Health concerns (-10%)")
# # 7. 品種偏好獎勵
# if is_preferred:
# bonus_score += 0.15
# bonus_reasons.append("Directly mentioned breed (+15%)")
# elif similarity > 0.8:
# bonus_score += 0.10
# bonus_reasons.append("Very similar to preferred breed (+10%)")
# # 計算最終分數
# final_score = min(0.95, base_score + bonus_score)
# space_score = _calculate_space_compatibility(
# breed_info.get('Size', 'Medium'),
# user_prefs.living_space
# )
# exercise_score = _calculate_exercise_compatibility(
# breed_info.get('Exercise_Needs', 'Moderate'),
# user_prefs.exercise_time
# )
# grooming_score = _calculate_grooming_compatibility(
# breed_info.get('Grooming_Needs', 'Moderate'),
# user_prefs.grooming_commitment
# )
# experience_score = _calculate_experience_compatibility(
# breed_info.get('Care_Level', 'Moderate'),
# user_prefs.experience_level
# )
# scores = {
# 'overall': final_score,
# 'space': space_score,
# 'exercise': exercise_score,
# 'grooming': grooming_score,
# 'experience': experience_score,
# 'noise': smart_rec.get('scores', {}).get('noise', 0.0),
# 'health': smart_rec.get('health_score', 0.5),
# 'temperament': smart_rec.get('scores', {}).get('temperament', 0.0)
# }
# final_recommendations.append({
# 'rank': 0,
# 'breed': breed_name,
# 'scores': scores,
# 'base_score': round(base_score, 4),
# 'bonus_score': round(bonus_score, 4),
# 'final_score': round(final_score, 4),
# 'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
# 'info': breed_info,
# 'noise_info': breed_noise_info.get(breed_name, {}),
# 'health_info': breed_health_info.get(breed_name, {})
# })
# # 根據最終分數排序
# final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
# # 更新排名
# for i, rec in enumerate(final_recommendations, 1):
# rec['rank'] = i
# # 保存到歷史記錄
# history_results = [{
# 'breed': rec['breed'],
# 'rank': rec['rank'],
# 'final_score': rec['final_score']
# } for rec in final_recommendations[:10]]
# history_component.save_search(
# user_preferences=None,
# results=history_results,
# search_type="description",
# description=description
# )
# result = format_recommendation_html(final_recommendations, is_description_search=True)
# return [gr.update(value=result), gr.update(visible=False)]
# except Exception as e:
# error_msg = f"Error processing your description. Details: {str(e)}"
# return [gr.update(value=error_msg), gr.update(visible=False)]
def on_description_search(description: str):
try:
# 初始化匹配器
matcher = SmartBreedMatcher(dog_data)
breed_recommendations = matcher.match_user_preference(description, top_n=10)
# 從描述中提取用戶偏好
user_prefs = UserPreferences(
living_space="apartment" if any(word in description.lower()
for word in ["apartment", "flat", "condo"]) else "house_small",
yard_access="no_yard" if any(word in description.lower()
for word in ["apartment", "flat", "condo"]) else "private_yard",
exercise_time=120 if any(word in description.lower()
for word in ["active", "exercise", "running", "athletic", "high energy"]) else 60,
exercise_type="active_training" if any(word in description.lower()
for word in ["training", "running", "jogging", "hiking"]) else "moderate_activity",
grooming_commitment="high" if any(word in description.lower()
for word in ["grooming", "brush", "maintain"]) else "medium",
experience_level="experienced" if any(word in description.lower()
for word in ["experienced", "trained", "professional"]) else "intermediate",
time_availability="flexible" if any(word in description.lower()
for word in ["time", "available", "flexible", "home"]) else "moderate",
has_children=any(word in description.lower()
for word in ["children", "kids", "family", "child"]),
children_age="school_age" if any(word in description.lower()
for word in ["school", "elementary"]) else "teenager" if any(word in description.lower()
for word in ["teen", "teenager"]) else "toddler" if any(word in description.lower()
for word in ["baby", "toddler"]) else None,
noise_tolerance="low" if any(word in description.lower()
for word in ["quiet", "peaceful", "silent"]) else "medium",
space_for_play=any(word in description.lower()
for word in ["yard", "garden", "outdoor", "space"]),
other_pets=any(word in description.lower()
for word in ["other pets", "cats", "dogs"]),
climate="moderate",
health_sensitivity="high" if any(word in description.lower()
for word in ["health", "medical", "sensitive"]) else "medium",
barking_acceptance="low" if any(word in description.lower()
for word in ["quiet", "no barking"]) else "medium"
)
final_recommendations = []
if not breed_recommendations:
print("No direct matches found, applying fallback logic")
# 使用 criteria 搜索的邏輯作為後備
recommendations = get_breed_recommendations(user_prefs, top_n=10)
if recommendations:
final_recommendations.extend(recommendations)
else:
# 保持原有的詳細評分系統
for smart_rec in breed_recommendations:
breed_name = smart_rec['breed']
breed_info = get_dog_description(breed_name)
if not isinstance(breed_info, dict):
continue
# 獲取基礎分數
base_score = smart_rec.get('base_score', 0.7)
similarity = smart_rec.get('similarity', 0)
is_preferred = smart_rec.get('is_preferred', False)
bonus_reasons = []
bonus_score = 0
# 1. 尺寸評估
size = breed_info.get('Size', '')
if size in ['Small', 'Tiny']:
if "apartment" in description.lower():
bonus_score += 0.05
bonus_reasons.append("Suitable size for apartment (+5%)")
else:
bonus_score -= 0.25
bonus_reasons.append("Size too small (-25%)")
elif size == 'Medium':
bonus_score += 0.15
bonus_reasons.append("Ideal size (+15%)")
elif size == 'Large':
if "apartment" in description.lower():
bonus_score -= 0.05
bonus_reasons.append("May be too large for apartment (-5%)")
elif size == 'Giant':
bonus_score -= 0.20
bonus_reasons.append("Size too large (-20%)")
# 2. 運動需求評估
exercise_needs = breed_info.get('Exercise_Needs', '')
if any(word in description.lower() for word in ['active', 'energetic', 'running']):
if exercise_needs in ['High', 'Very High']:
bonus_score += 0.20
bonus_reasons.append("Exercise needs match (+20%)")
elif exercise_needs == 'Low':
bonus_score -= 0.15
bonus_reasons.append("Insufficient exercise level (-15%)")
else:
if exercise_needs == 'Moderate':
bonus_score += 0.10
bonus_reasons.append("Moderate exercise needs (+10%)")
# 3. 美容需求評估
grooming = breed_info.get('Grooming_Needs', '')
if user_prefs.grooming_commitment == "high":
if grooming == 'High':
bonus_score += 0.10
bonus_reasons.append("High grooming match (+10%)")
else:
if grooming == 'High':
bonus_score -= 0.15
bonus_reasons.append("High grooming needs (-15%)")
elif grooming == 'Low':
bonus_score += 0.10
bonus_reasons.append("Low grooming needs (+10%)")
# 4. 家庭適應性評估
if user_prefs.has_children:
if breed_info.get('Good_With_Children'):
bonus_score += 0.15
bonus_reasons.append("Excellent with children (+15%)")
temperament = breed_info.get('Temperament', '').lower()
if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
bonus_score += 0.05
bonus_reasons.append("Family-friendly temperament (+5%)")
# 5. 噪音評估
if user_prefs.noise_tolerance == "low":
noise_level = breed_noise_info.get(breed_name, {}).get('noise_level', 'Unknown')
if noise_level == 'High':
bonus_score -= 0.10
bonus_reasons.append("High noise level (-10%)")
elif noise_level == 'Low':
bonus_score += 0.10
bonus_reasons.append("Low noise level (+10%)")
# 6. 健康考慮
if user_prefs.health_sensitivity == "high":
health_score = smart_rec.get('health_score', 0.5)
if health_score > 0.8:
bonus_score += 0.10
bonus_reasons.append("Excellent health score (+10%)")
elif health_score < 0.5:
bonus_score -= 0.10
bonus_reasons.append("Health concerns (-10%)")
# 7. 品種偏好獎勵
if is_preferred:
bonus_score += 0.15
bonus_reasons.append("Directly mentioned breed (+15%)")
elif similarity > 0.8:
bonus_score += 0.10
bonus_reasons.append("Very similar to preferred breed (+10%)")
# 計算最終分數
final_score = min(0.95, base_score + bonus_score)
scores = {
'overall': final_score,
'space': _calculate_space_compatibility(
breed_info.get('Size', 'Medium'),
user_prefs.living_space
),
'exercise': _calculate_exercise_compatibility(
breed_info.get('Exercise_Needs', 'Moderate'),
user_prefs.exercise_time
),
'grooming': _calculate_grooming_compatibility(
breed_info.get('Grooming_Needs', 'Moderate'),
user_prefs.grooming_commitment
),
'experience': _calculate_experience_compatibility(
breed_info.get('Care_Level', 'Moderate'),
user_prefs.experience_level
),
'noise': smart_rec.get('scores', {}).get('noise', 0.0),
'health': smart_rec.get('health_score', 0.5),
'temperament': smart_rec.get('scores', {}).get('temperament', 0.0)
}
final_recommendations.append({
'rank': 0,
'breed': breed_name,
'scores': scores,
'base_score': round(base_score, 4),
'bonus_score': round(bonus_score, 4),
'final_score': round(final_score, 4),
'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
'info': breed_info,
'noise_info': breed_noise_info.get(breed_name, {}),
'health_info': breed_health_info.get(breed_name, {})
})
# 排序並更新排名
if final_recommendations:
final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
for i, rec in enumerate(final_recommendations, 1):
rec['rank'] = i
# 保存搜索歷史
history_results = [{
'breed': rec['breed'],
'rank': rec['rank'],
'overall_score': rec['final_score'],
'base_score': rec['base_score'],
'bonus_score': rec['bonus_score'],
'scores': rec['scores']
} for rec in final_recommendations[:10]]
# 保存到歷史記錄
history_component.save_search(
user_preferences={'description': description},
results=history_results,
search_type="description"
)
# 返回結果
result = format_recommendation_html(final_recommendations, is_description_search=True)
return result
return "No matching breeds found. Please try a different description."
except Exception as e:
print(f"Error in description search: {str(e)}")
import traceback
print(traceback.format_exc())
return "Error processing your description"
def _calculate_space_compatibility(size: str, living_space: str) -> float:
"""住宿空間適應性評分"""
if living_space == "apartment":
scores = {
'Tiny': 0.6,
'Small': 0.8,
'Medium': 1.0,
'Medium-Large': 0.6,
'Large': 0.4,
'Giant': 0.2
}
else: # house
scores = {
'Tiny': 0.4,
'Small': 0.6,
'Medium': 0.8,
'Medium-Large': 1.0,
'Large': 0.9,
'Giant': 0.7
}
return scores.get(size, 0.5)
def _calculate_exercise_compatibility(exercise_needs: str, exercise_time: int) -> float:
"""運動需求相容性評分"""
# 轉換運動時間到評分標準
if exercise_time >= 120: # 高運動量
scores = {
'Very High': 1.0,
'High': 0.8,
'Moderate': 0.5,
'Low': 0.2
}
elif exercise_time >= 60: # 中等運動量
scores = {
'Very High': 0.5,
'High': 0.7,
'Moderate': 1.0,
'Low': 0.8
}
else: # 低運動量
scores = {
'Very High': 0.2,
'High': 0.4,
'Moderate': 0.7,
'Low': 1.0
}
return scores.get(exercise_needs, 0.5)
def _calculate_grooming_compatibility(grooming_needs: str, grooming_commitment: str) -> float:
"""美容需求相容性評分"""
if grooming_commitment == "high":
scores = {
'High': 1.0,
'Moderate': 0.8,
'Low': 0.5
}
elif grooming_commitment == "medium":
scores = {
'High': 0.6,
'Moderate': 1.0,
'Low': 0.8
}
else: # low
scores = {
'High': 0.3,
'Moderate': 0.6,
'Low': 1.0
}
return scores.get(grooming_needs, 0.5)
def _calculate_experience_compatibility(care_level: str, experience_level: str) -> float:
if experience_level == "experienced":
care_scores = {
'High': 1.0,
'Moderate': 0.8,
'Low': 0.6
}
elif experience_level == "intermediate":
care_scores = {
'High': 0.6,
'Moderate': 1.0,
'Low': 0.8
}
else: # beginner
care_scores = {
'High': 0.3,
'Moderate': 0.7,
'Low': 1.0
}
return care_scores.get(care_level, 0.7)
def show_loading():
return [gr.update(value=""), gr.update(visible=True)]
get_recommendations_btn.click(
fn=on_find_match_click,
inputs=[
living_space,
yard_access,
exercise_time,
exercise_type,
grooming_commitment,
experience_level,
time_availability,
has_children,
children_age,
noise_tolerance
],
outputs=recommendation_output
)
description_search_btn.click(
fn=show_loading, # 先顯示加載消息
outputs=[description_output, loading_msg]
).then( # 然後執行搜索
fn=on_description_search,
inputs=[description_input],
outputs=[description_output, loading_msg]
)
return {
'living_space': living_space,
'exercise_time': exercise_time,
'grooming_commitment': grooming_commitment,
'experience_level': experience_level,
'has_children': has_children,
'noise_tolerance': noise_tolerance,
'get_recommendations_btn': get_recommendations_btn,
'recommendation_output': recommendation_output,
'description_input': description_input,
'description_search_btn': description_search_btn,
'description_output': description_output
}
|