Spaces:
Restarting
on
Zero
Restarting
on
Zero
File size: 23,662 Bytes
0ef1e7a b7e8045 761ce54 361dc99 0ef1e7a adf9a2f 6895e9a 0381173 0ef1e7a 2196d2b 7f369bb 0ef1e7a fb964b2 78f7931 e398dfd 1b921c8 0ef1e7a b7e8045 0ef1e7a b7e8045 0ef1e7a b7e8045 0ef1e7a b7e8045 0ef1e7a b7e8045 0ef1e7a 361dc99 8d9a9fd 0ef1e7a 1b921c8 0ef1e7a 361dc99 0ef1e7a 8d9a9fd 0ef1e7a 361dc99 0ef1e7a 361dc99 8d9a9fd 361dc99 0ef1e7a 361dc99 0ef1e7a 361dc99 0ef1e7a 361dc99 0ef1e7a 5ef2022 d15c1f9 5ef2022 be7eec2 5ef2022 be7eec2 5ef2022 be7eec2 5ef2022 d15c1f9 5ef2022 dee9c35 5ef2022 be7eec2 5ef2022 be7eec2 bf35501 be7eec2 361dc99 be7eec2 5ef2022 be7eec2 5ef2022 78f7931 c5c2578 0ef1e7a 87a2e42 cd7b64d 177bc81 1b921c8 c5c2578 1b921c8 78f7931 be7eec2 d1c6814 c5c2578 5ef2022 d1c6814 b9c642f c5c2578 d1c6814 e398dfd c5c2578 d1c6814 a4c5b38 c5c2578 d1c6814 87a2e42 cd7b64d 177bc81 2196d2b 78f7931 2196d2b 5ef2022 d1c6814 2196d2b d1c6814 2196d2b d1c6814 2196d2b d1c6814 2196d2b 0ef1e7a 637d1bb 0ef1e7a 0381173 0ef1e7a 9ec4bd2 2196d2b 177bc81 0ef1e7a 2196d2b a6f73ec 2196d2b 0ef1e7a 2196d2b 0ef1e7a 7f369bb 0ef1e7a 2196d2b 177bc81 0ef1e7a 2196d2b 0ef1e7a 2196d2b 0ef1e7a 2196d2b 0ef1e7a 2196d2b 0ef1e7a 2196d2b 0ef1e7a b7e8045 2196d2b b7e8045 2196d2b b7e8045 2196d2b 0ef1e7a 2196d2b 0ef1e7a 2196d2b 0ef1e7a 7f369bb 0ef1e7a 7f369bb 0ef1e7a 7af5bf2 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a addde7a 0ef1e7a 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a dc000b7 0ef1e7a 8d9a9fd 0ef1e7a 8d9a9fd 0ef1e7a cda8e51 42f405c cda8e51 42f405c cda8e51 42f405c d14cc5a 42f405c e0aa3d5 0ef1e7a 3cf7045 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
import traceback
import spaces
from torchvision.models import convnext_base, ConvNeXt_Base_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
format_description_html,
format_single_dog_result,
format_multiple_breeds_result,
format_unknown_breed_message,
format_not_dog_message,
format_hint_html,
format_multi_dog_container,
format_breed_details_html,
get_color_scheme,
get_akc_breeds_link
)
from urllib.parse import quote
from ultralytics import YOLO
from functools import wraps
history_manager = UserHistoryManager()
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
# 1. 初始化 backbone
self.backbone = convnext_base(weights=ConvNeXt_Base_Weights.IMAGENET1K_V1)
self.backbone.classifier = nn.Identity() # 移除原始分類器
# 2. 使用測試數據確定實際的特徵維度
with torch.no_grad(): # 不需要計算梯度
dummy_input = torch.randn(1, 3, 224, 224) # 創建示例輸入
features = self.backbone(dummy_input)
if len(features.shape) > 2: # 如果特徵是多維的
features = features.mean([-2, -1]) # 進行全局平均池化
self.feature_dim = features.shape[1] # 獲取正確的特徵維度
print(f"Feature Dim: {self.feature_dim}") # 幫助調試
# 3. 設置多頭注意力層
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
# 4. 設置分類器
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
def forward(self, x):
"""
模型的前向傳播過程
Args:
x (Tensor): 輸入圖像張量,形狀為 [batch_size, channels, height, width]
Returns:
Tuple[Tensor, Tensor]: 分類邏輯值和注意力特徵
"""
x = x.to(self.device)
# 1. 提取基礎特徵
features = self.backbone(x)
# 2. 處理特徵維度
if len(features.shape) > 2:
# 如果特徵維度是 [batch_size, channels, height, width]
# 轉換為 [batch_size, channels]
features = features.mean([-2, -1]) # 使用全局平均池化
# 3. 應用注意力機制
attended_features = self.attention(features)
# 4. 最終分類
logits = self.classifier(attended_features)
return logits, attended_features
class ModelManager:
"""
模型管理器:負責模型的初始化、設備管理和資源控制(CPU, GPU)
"""
_instance = None
_initialized = False
_yolo_model = None
_breed_model = None
_device = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
# 避免重複初始化
if not ModelManager._initialized:
# 初始化設備,這會在第一次創建實例時執行
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ModelManager._initialized = True
@property
def device(self):
"""
提供對設備的訪問
確保在需要時設備已經被初始化
"""
if self._device is None:
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
return self._device
@property
def yolo_model(self):
"""
延遲初始化YOLO
只有在第一次使用時才會創建實例
"""
if self._yolo_model is None:
self._yolo_model = YOLO('yolov8x.pt')
return self._yolo_model
@property
def breed_model(self):
"""
延遲初始化品種分類模型
只有在第一次使用時才會創建實例並移動到正確的設備上
"""
if self._breed_model is None:
self._breed_model = BaseModel(
num_classes=len(dog_breeds),
device=self.device
).to(self.device)
checkpoint = torch.load(
'ConvNextBase_best_model_dog.pth',
map_location=self.device # 確保checkpoint加載到正確的設備
)
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
self._breed_model.eval()
return self._breed_model
model_manager = ModelManager()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
@spaces.GPU
def predict_single_dog(image):
"""
Predicts the dog breed using only the classifier.
Args:
image: PIL Image or numpy array
Returns:
tuple: (top1_prob, topk_breeds, relative_probs)
"""
image_tensor = preprocess_image(image).to(model_manager.device)
with torch.no_grad():
# Get model outputs (只使用logits,不需要features)
logits = model_manager.breed_model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
probs = F.softmax(logits, dim=1)
# Classifier prediction
top5_prob, top5_idx = torch.topk(probs, k=5)
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
probabilities = [prob.item() for prob in top5_prob[0]]
# Calculate relative probabilities
sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
# Debug output
print("\nClassifier Predictions:")
for breed, prob in zip(breeds[:5], probabilities[:5]):
print(f"{breed}: {prob:.4f}")
return probabilities[0], breeds[:3], relative_probs
@spaces.GPU
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
"""
使用YOLO模型檢測圖片中的狗。
只保留被識別為狗(class 16)的物體,並標記它們的狀態。
Args:
image: PIL Image
conf_threshold: YOLO檢測的信心度閾值
iou_threshold: 非極大值抑制的IoU閾值
Returns:
list: 包含檢測到的狗的列表,每個元素是(cropped_image, confidence, box, is_dog)的元組
"""
results = model_manager.yolo_model(image, conf=conf_threshold,
iou=iou_threshold)[0]
dogs = []
boxes = []
# 只處理被識別為狗的物體
for box in results.boxes:
class_id = box.cls.item()
if class_id == 16: # COCO dataset中狗的類別是16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
boxes.append((xyxy, confidence, True)) # 加入is_dog標記
if not boxes:
# 如果沒有檢測到狗,返回整張圖片並標記為非狗
return [(image, 1.0, [0, 0, image.width, image.height], False)]
nms_boxes = non_max_suppression(boxes, iou_threshold)
detected_objects = []
# 處理每個檢測到的狗
for box, confidence, is_dog in nms_boxes:
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
# 擴大檢測框範圍以包含完整的狗
x1 = max(0, x1 - w * 0.05)
y1 = max(0, y1 - h * 0.05)
x2 = min(image.width, x2 + w * 0.05)
y2 = min(image.height, y2 + h * 0.05)
cropped_image = image.crop((x1, y1, x2, y2))
detected_objects.append((cropped_image, confidence, [x1, y1, x2, y2], is_dog))
return detected_objects
def non_max_suppression(boxes, iou_threshold):
keep = []
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
while boxes:
current = boxes.pop(0)
keep.append(current)
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
return keep
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection / float(area1 + area2 - intersection)
return iou
def create_breed_comparison(breed1: str, breed2: str) -> dict:
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
# 標準化數值轉換
value_mapping = {
'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
}
comparison_data = {
breed1: {},
breed2: {}
}
for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
comparison_data[breed] = {
'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
'Good_with_Children': info['Good with Children'] == 'Yes',
'Original_Data': info
}
return comparison_data
@spaces.GPU
def predict(image):
"""
主要的預測函數,負責處理狗的檢測和品種辨識。
它整合了YOLO的物體檢測和專門的品種分類模型。
實施雙層檢測,非狗會直接忽略.
Args:
image: PIL Image 或 numpy array
Returns:
tuple: (html_output, annotated_image, initial_state)
"""
if image is None:
return format_hint_html("Please upload an image to start."), None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 檢測圖片中的狗
dogs = detect_multiple_dogs(image)
color_scheme = get_color_scheme(len(dogs) == 1)
# 準備標註
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
# 處理每個檢測到的物體
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# 繪製框和標籤
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
# 繪製標籤背景和文字
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
try:
# 首先檢查是否為狗
if not is_dog:
dogs_info += format_not_dog_message(color, i+1)
continue
# 如果是狗,進行品種預測
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# 根據信心度決定輸出格式
if combined_confidence < 0.2:
dogs_info += format_unknown_breed_message(color, i+1)
elif top1_prob >= 0.45:
breed = topk_breeds[0]
description = get_dog_description(breed)
if description is None:
description = {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
dogs_info += format_single_dog_result(breed, description, color)
else:
dogs_info += format_multiple_breeds_result(
topk_breeds,
relative_probs,
color,
i+1,
lambda breed: get_dog_description(breed) or {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
)
except Exception as e:
print(f"Error formatting results for dog {i+1}: {str(e)}")
dogs_info += format_unknown_breed_message(color, i+1)
# 包裝最終的HTML輸出
html_output = format_multi_dog_container(dogs_info)
# 準備初始狀態
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return format_hint_html(error_msg), None, None
def show_details_html(choice, previous_output, initial_state):
"""
Generate detailed HTML view for a selected breed.
Args:
choice: str, Selected breed option
previous_output: str, Previous HTML output
initial_state: dict, Current state information
Returns:
tuple: (html_output, gradio_update, updated_state)
"""
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
html_output = format_breed_details_html(description, breed)
# Update state
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return format_hint_html(error_msg), gr.update(visible=True), initial_state
def main():
with gr.Blocks(css=get_css_styles()) as iface:
gr.HTML("""
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
🐾 PawMatch AI
</h1>
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
Your Smart Dog Breed Guide
</h2>
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
<p style='color: #718096; font-size: 0.9em;'>
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
</p>
</header>
""")
# 先創建歷史組件實例(但不創建標籤頁)
history_component = create_history_component()
with gr.Tabs():
# 1. 品種檢測標籤頁
example_images = [
'Border_Collie.jpg',
'Golden_Retriever.jpeg',
'Saint_Bernard.jpeg',
'Samoyed.jpg',
'French_Bulldog.jpeg'
]
detection_components = create_detection_tab(predict, example_images)
# 2. 品種比較標籤頁
comparison_components = create_comparison_tab(
dog_breeds=dog_breeds,
get_dog_description=get_dog_description,
breed_health_info=breed_health_info,
breed_noise_info=breed_noise_info
)
# 3. 品種推薦標籤頁
recommendation_components = create_recommendation_tab(
UserPreferences=UserPreferences,
get_breed_recommendations=get_breed_recommendations,
format_recommendation_html=format_recommendation_html,
history_component=history_component
)
# 4. 最後創建歷史記錄標籤頁
create_history_tab(history_component)
# Footer
gr.HTML('''
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 20px;
padding: 20px 0;
">
<p style="
font-family: 'Arial', sans-serif;
font-size: 14px;
font-weight: 500;
letter-spacing: 2px;
background: linear-gradient(90deg, #555, #007ACC);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin: 0;
text-transform: uppercase;
display: inline-block;
">EXPLORE THE CODE →</p>
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
</a>
</div>
''')
return iface
if __name__ == "__main__":
iface = main()
iface.launch() |