File size: 85,873 Bytes
2c41ede
0ef1e7a
 
679c889
9e010e9
7409de7
0ef1e7a
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
 
a4d55a1
 
 
 
 
 
 
 
0ef1e7a
a4d55a1
 
 
3e0fc3d
a4d55a1
3e0fc3d
 
 
 
a4d55a1
 
 
0ef1e7a
 
a4d55a1
0ef1e7a
 
 
 
b4e520b
8501045
 
b4e520b
 
 
8501045
b4e520b
0ef1e7a
b4e520b
8501045
 
b4e520b
 
 
8501045
b4e520b
8501045
 
 
 
 
 
 
 
b4e520b
 
 
8501045
 
 
 
 
 
b4e520b
 
8501045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
8501045
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
8501045
b4e520b
 
470297d
 
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1ccf49
8501045
 
676cf64
b4e520b
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
 
 
 
676cf64
 
 
b4e520b
 
 
676cf64
b4e520b
 
676cf64
 
 
 
 
 
 
 
b4e520b
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
676cf64
b4e520b
 
 
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
676cf64
 
 
 
b4e520b
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
 
 
 
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
676cf64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
0ef1e7a
 
 
b4e520b
0ef1e7a
a17b4f2
 
 
 
 
 
 
11269b9
470297d
a4d55a1
 
 
 
 
 
 
470297d
11269b9
a4d55a1
 
 
11269b9
 
a4d55a1
 
 
11269b9
 
a4d55a1
 
 
11269b9
 
a4d55a1
 
 
11269b9
470297d
 
 
 
 
a4d55a1
470297d
11269b9
a4d55a1
11269b9
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d55a1
11269b9
a4d55a1
11269b9
470297d
 
a4d55a1
11269b9
 
470297d
a4d55a1
11269b9
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
11269b9
a4d55a1
 
 
 
 
 
11269b9
470297d
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11269b9
a4d55a1
11269b9
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11269b9
a4d55a1
 
 
 
 
 
 
470297d
a4d55a1
 
 
470297d
 
a4d55a1
 
 
470297d
 
a4d55a1
 
 
470297d
 
a4d55a1
 
 
470297d
0ef1e7a
b4e520b
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
a4d55a1
 
 
 
 
 
 
11269b9
a4d55a1
59f8ee9
a4d55a1
 
 
 
 
 
 
 
 
59f8ee9
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
11269b9
a4d55a1
 
 
 
 
 
 
 
11269b9
a4d55a1
 
59f8ee9
a4d55a1
 
11269b9
 
a4d55a1
11269b9
a4d55a1
 
 
 
 
 
 
11269b9
b9f7c90
a4d55a1
59f8ee9
 
a4d55a1
b9f7c90
59f8ee9
a4d55a1
 
11269b9
a4d55a1
59f8ee9
 
 
 
 
a4d55a1
 
 
59f8ee9
 
 
 
 
a4d55a1
 
 
59f8ee9
a4d55a1
 
59f8ee9
 
a4d55a1
 
 
59f8ee9
a4d55a1
 
59f8ee9
 
a4d55a1
 
 
59f8ee9
0ef1e7a
b4e520b
a4d55a1
59f8ee9
b4e520b
a4d55a1
 
 
 
 
 
 
 
 
 
 
11269b9
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
 
b4e520b
470297d
 
 
 
 
0ef1e7a
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
470297d
b4e520b
 
470297d
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cf1c2
 
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21cf1c2
a4d55a1
470297d
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4794a2
a4d55a1
 
 
 
 
 
 
 
 
 
7745d43
a4d55a1
 
 
 
9ddc325
a4d55a1
 
 
 
9ddc325
0ef1e7a
b4e520b
a4d55a1
 
 
37c8c7d
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4794a2
a4d55a1
 
 
 
 
 
 
 
b4794a2
a4d55a1
 
 
 
b4794a2
 
a4d55a1
 
 
 
 
b4794a2
 
a4d55a1
 
 
 
b4794a2
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4794a2
 
a4d55a1
 
 
b4794a2
a4d55a1
 
 
b4794a2
a4d55a1
1a4e64f
a4d55a1
470297d
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef1e7a
470297d
 
 
 
 
 
 
 
 
 
0ef1e7a
 
470297d
0ef1e7a
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
470297d
 
 
 
 
 
b4e520b
470297d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4e520b
 
 
 
470297d
 
 
b4e520b
470297d
b4e520b
 
470297d
b4e520b
 
470297d
 
b4e520b
470297d
 
 
 
 
a4d55a1
 
 
 
 
 
470297d
a4d55a1
 
 
470297d
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
a4d55a1
 
470297d
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
 
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
a4d55a1
 
 
 
 
 
 
 
 
470297d
a4d55a1
 
 
 
470297d
 
 
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fd2c2a
d776e91
 
 
 
1fd2c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470297d
1fd2c2a
 
 
 
 
f7be255
1fd2c2a
 
 
 
0e8e44e
 
 
 
 
f7be255
 
418bc03
f7be255
 
8f98474
418bc03
f7be255
 
 
 
 
 
418bc03
f7be255
 
 
 
 
418bc03
f7be255
0e8e44e
f7be255
 
1fd2c2a
 
 
f9ef722
 
1fd2c2a
f9ef722
 
 
1fd2c2a
f9ef722
f7be255
 
 
 
1fd2c2a
f7be255
1fd2c2a
f7be255
 
 
 
 
 
 
0e8e44e
ab96cef
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5fb6cc
a4d55a1
 
 
 
 
 
 
 
 
 
812e60c
a4d55a1
812e60c
a4d55a1
 
 
 
812e60c
a4d55a1
 
 
 
 
 
 
 
bf54860
a4d55a1
812e60c
a4d55a1
 
 
e5fb6cc
a4d55a1
 
 
 
 
 
 
 
 
14daade
a4d55a1
 
 
 
 
 
 
 
 
8a32c87
a4d55a1
 
 
 
e5fb6cc
a4d55a1
 
 
 
 
 
812e60c
a4d55a1
 
 
 
 
 
 
 
812e60c
 
1fd2c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa01404
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5fb6cc
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b89b477
fa01404
bf54860
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa01404
a4d55a1
 
 
812e60c
a4d55a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback
import math
import random

# @dataclass
# class UserPreferences:

#     """使用者偏好設定的資料結構"""
#     living_space: str  # "apartment", "house_small", "house_large"
#     yard_access: str  # "no_yard", "shared_yard", "private_yard" 
#     exercise_time: int  # minutes per day
#     exercise_type: str  # "light_walks", "moderate_activity", "active_training" 
#     grooming_commitment: str  # "low", "medium", "high"
#     experience_level: str  # "beginner", "intermediate", "advanced"
#     time_availability: str  # "limited", "moderate", "flexible" 
#     has_children: bool
#     children_age: str  # "toddler", "school_age", "teenager"
#     noise_tolerance: str  # "low", "medium", "high"
#     space_for_play: bool
#     other_pets: bool
#     climate: str  # "cold", "moderate", "hot"
#     health_sensitivity: str = "medium"
#     barking_acceptance: str = None

#     def __post_init__(self):
#         """在初始化後運行,用於設置派生值"""
#         if self.barking_acceptance is None:
#             self.barking_acceptance = self.noise_tolerance

@dataclass
class UserPreferences:
    """使用者偏好設定的資料結構,整合基本條件與進階評估參數"""
    living_space: str        # "apartment", "house_small", "house_large"
    yard_access: str        # "no_yard", "shared_yard", "private_yard"
    exercise_time: int      # 每日運動時間(分鐘)
    exercise_type: str      # "light_walks", "moderate_activity", "active_training"
    grooming_commitment: str    # "low", "medium", "high"
    experience_level: str       # "beginner", "intermediate", "advanced"
    time_availability: str      # "limited", "moderate", "flexible"
    has_children: bool
    children_age: str       # "toddler", "school_age", "teenager"
    noise_tolerance: str    # "low", "medium", "high"
    space_for_play: bool
    other_pets: bool
    climate: str           # "cold", "moderate", "hot"

    living_floor: int = 1   # 居住樓層,對公寓住戶特別重要
    exercise_intensity: str = "moderate"  # "low", "moderate", "high"
    home_alone_time: int = 4    # 每日獨處時間(小時)
    health_sensitivity: str = "medium"    # "low", "medium", "high"
    barking_acceptance: str = None        # 如果未指定,默認使用 noise_tolerance
    lifestyle_activity: str = "moderate"  # "sedentary", "moderate", "active"

    def __post_init__(self):
        """初始化後執行,用於設置派生值和驗證"""
        if self.barking_acceptance is None:
            self.barking_acceptance = self.noise_tolerance


@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
    """計算品種額外加分"""
    bonus = 0.0
    temperament = breed_info.get('Temperament', '').lower()
    
    # 1. 壽命加分(最高0.05)
    try:
        lifespan = breed_info.get('Lifespan', '10-12 years')
        years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
        longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
        bonus += longevity_bonus
    except:
        pass

    # 2. 性格特徵加分(最高0.15)
    positive_traits = {
        'friendly': 0.05,           
        'gentle': 0.05,
        'patient': 0.05,
        'intelligent': 0.04,
        'adaptable': 0.04,
        'affectionate': 0.04,
        'easy-going': 0.03,         
        'calm': 0.03                
    }
    
    negative_traits = {
        'aggressive': -0.08,        
        'stubborn': -0.06,
        'dominant': -0.06,
        'aloof': -0.04,
        'nervous': -0.05,           
        'protective': -0.04         
    }
    
    personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
    personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
    bonus += max(-0.15, min(0.15, personality_score))

    # 3. 適應性加分(最高0.1)
    adaptability_bonus = 0.0
    if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
        adaptability_bonus += 0.05
    if 'adaptable' in temperament or 'versatile' in temperament:
        adaptability_bonus += 0.05
    bonus += min(0.1, adaptability_bonus)

    # 4. 家庭相容性(最高0.1)
    if user_prefs.has_children:
        family_traits = {
            'good with children': 0.06,  
            'patient': 0.05,
            'gentle': 0.05,
            'tolerant': 0.04,           
            'playful': 0.03             
        }
        unfriendly_traits = {
            'aggressive': -0.08,        
            'nervous': -0.07,
            'protective': -0.06,
            'territorial': -0.05        
        }
        
        # 年齡評估這樣能更細緻
        age_adjustments = {
            'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
            'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
            'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
        }
        
        adj = age_adjustments.get(user_prefs.children_age, 
                                {'bonus_mult': 1.0, 'penalty_mult': 1.0})
        
        family_bonus = sum(value for trait, value in family_traits.items() 
                          if trait in temperament) * adj['bonus_mult']
        family_penalty = sum(value for trait, value in unfriendly_traits.items() 
                           if trait in temperament) * adj['penalty_mult']
        
        bonus += min(0.15, max(-0.2, family_bonus + family_penalty))

    
    # 5. 專門技能加分(最高0.1)
    skill_bonus = 0.0
    special_abilities = {
        'working': 0.03,
        'herding': 0.03,
        'hunting': 0.03,
        'tracking': 0.03,
        'agility': 0.02
    }
    for ability, value in special_abilities.items():
        if ability in temperament.lower():
            skill_bonus += value
    bonus += min(0.1, skill_bonus)


    # 6. 適應性評估 - 根據具體環境給予更細緻的評分
    adaptability_bonus = 0.0
    if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
        adaptability_bonus += 0.08  # 小型犬更適合公寓
    
    # 環境適應性評估
    if 'adaptable' in temperament or 'versatile' in temperament:
        if user_prefs.living_space == "apartment":
            adaptability_bonus += 0.10  # 適應性在公寓環境更重要
        else:
            adaptability_bonus += 0.05  # 其他環境仍有加分
            
    # 氣候適應性
    description = breed_info.get('Description', '').lower()
    climate = user_prefs.climate
    if climate == 'hot':
        if 'heat tolerant' in description or 'warm climate' in description:
            adaptability_bonus += 0.08
        elif 'thick coat' in description or 'cold climate' in description:
            adaptability_bonus -= 0.10
    elif climate == 'cold':
        if 'thick coat' in description or 'cold climate' in description:
            adaptability_bonus += 0.08
        elif 'heat tolerant' in description or 'short coat' in description:
            adaptability_bonus -= 0.10
            
    bonus += min(0.15, adaptability_bonus)

    return min(0.5, max(-0.25, bonus))
    

@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
    """
    計算額外的評估因素,結合品種特性與使用者需求的全面評估系統
    
    此函數整合了:
    1. 多功能性評估 - 品種的多樣化能力
    2. 訓練性評估 - 學習和服從能力
    3. 能量水平評估 - 活力和運動需求
    4. 美容需求評估 - 護理和維護需求
    5. 社交需求評估 - 與人互動的需求程度
    6. 氣候適應性 - 對環境的適應能力
    7. 運動類型匹配 - 與使用者運動習慣的契合度
    8. 生活方式適配 - 與使用者日常生活的匹配度
    """
    factors = {
        'versatility': 0.0,        # 多功能性
        'trainability': 0.0,       # 可訓練度
        'energy_level': 0.0,       # 能量水平
        'grooming_needs': 0.0,     # 美容需求
        'social_needs': 0.0,       # 社交需求
        'weather_adaptability': 0.0,# 氣候適應性
        'exercise_match': 0.0,     # 運動匹配度
        'lifestyle_fit': 0.0       # 生活方式適配度
    }
    
    temperament = breed_info.get('Temperament', '').lower()
    description = breed_info.get('Description', '').lower()
    size = breed_info.get('Size', 'Medium')
    
    # 1. 多功能性評估 - 加強品種用途評估
    versatile_traits = {
        'intelligent': 0.25,
        'adaptable': 0.25,
        'trainable': 0.20,
        'athletic': 0.15,
        'versatile': 0.15
    }
    
    working_roles = {
        'working': 0.20,
        'herding': 0.15,
        'hunting': 0.15,
        'sporting': 0.15,
        'companion': 0.10
    }
    
    # 計算特質分數
    trait_score = sum(value for trait, value in versatile_traits.items() 
                     if trait in temperament)
    
    # 計算角色分數
    role_score = sum(value for role, value in working_roles.items() 
                    if role in description)
    
    # 根據使用者需求調整多功能性評分
    purpose_traits = {
        'light_walks': ['calm', 'gentle', 'easy-going'],
        'moderate_activity': ['adaptable', 'balanced', 'versatile'],
        'active_training': ['intelligent', 'trainable', 'working']
    }
    
    if user_prefs.exercise_type in purpose_traits:
        matching_traits = sum(1 for trait in purpose_traits[user_prefs.exercise_type] 
                            if trait in temperament)
        trait_score += matching_traits * 0.15
    
    factors['versatility'] = min(1.0, trait_score + role_score)
    
    # 2. 訓練性評估 - 考慮使用者經驗
    trainable_traits = {
        'intelligent': 0.3,
        'eager to please': 0.3,
        'trainable': 0.2,
        'quick learner': 0.2,
        'obedient': 0.2
    }
    
    base_trainability = sum(value for trait, value in trainable_traits.items() 
                          if trait in temperament)
    
    # 根據使用者經驗調整訓練性評分
    experience_multipliers = {
        'beginner': 1.2,    # 新手更需要容易訓練的狗
        'intermediate': 1.0,
        'advanced': 0.8     # 專家能處理較難訓練的狗
    }
    
    factors['trainability'] = min(1.0, base_trainability * 
                                experience_multipliers.get(user_prefs.experience_level, 1.0))
    
    # 3. 能量水平評估 - 強化運動需求匹配
    exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
    energy_levels = {
        'VERY HIGH': {
            'score': 1.0,
            'min_exercise': 120,
            'ideal_exercise': 150
        },
        'HIGH': {
            'score': 0.8,
            'min_exercise': 90,
            'ideal_exercise': 120
        },
        'MODERATE': {
            'score': 0.6,
            'min_exercise': 60,
            'ideal_exercise': 90
        },
        'LOW': {
            'score': 0.4,
            'min_exercise': 30,
            'ideal_exercise': 60
        }
    }
    
    breed_energy = energy_levels.get(exercise_needs, energy_levels['MODERATE'])
    
    # 計算運動時間匹配度
    if user_prefs.exercise_time >= breed_energy['ideal_exercise']:
        energy_score = breed_energy['score']
    else:
        # 如果運動時間不足,按比例降低分數
        deficit_ratio = max(0.4, user_prefs.exercise_time / breed_energy['ideal_exercise'])
        energy_score = breed_energy['score'] * deficit_ratio
    
    factors['energy_level'] = energy_score
    
    # 4. 美容需求評估 - 加入更多毛髮類型考量
    grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
    grooming_levels = {
        'HIGH': 1.0,
        'MODERATE': 0.6,
        'LOW': 0.3
    }
    
    # 特殊毛髮類型評估
    coat_adjustments = 0
    if 'long coat' in description:
        coat_adjustments += 0.2
    if 'double coat' in description:
        coat_adjustments += 0.15
    if 'curly' in description:
        coat_adjustments += 0.15
        
    # 根據使用者承諾度調整
    commitment_multipliers = {
        'low': 1.5,     # 低承諾度時加重美容需求的影響
        'medium': 1.0,
        'high': 0.8     # 高承諾度時降低美容需求的影響
    }
    
    base_grooming = grooming_levels.get(grooming_needs, 0.6) + coat_adjustments
    factors['grooming_needs'] = min(1.0, base_grooming * 
                                  commitment_multipliers.get(user_prefs.grooming_commitment, 1.0))
    
    # 5. 社交需求評估 - 加強家庭情況考量
    social_traits = {
        'friendly': 0.25,
        'social': 0.25,
        'affectionate': 0.20,
        'people-oriented': 0.20
    }
    
    antisocial_traits = {
        'independent': -0.20,
        'aloof': -0.20,
        'reserved': -0.15
    }
    
    social_score = sum(value for trait, value in social_traits.items() 
                      if trait in temperament)
    antisocial_score = sum(value for trait, value in antisocial_traits.items() 
                          if trait in temperament)
    
    # 家庭情況調整
    if user_prefs.has_children:
        child_friendly_bonus = 0.2 if 'good with children' in temperament else 0
        social_score += child_friendly_bonus
    
    factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
    
    # 6. 氣候適應性評估 - 更細緻的環境適應評估
    climate_traits = {
        'cold': {
            'positive': ['thick coat', 'winter', 'cold climate'],
            'negative': ['short coat', 'heat sensitive']
        },
        'hot': {
            'positive': ['short coat', 'heat tolerant', 'warm climate'],
            'negative': ['thick coat', 'cold climate']
        },
        'moderate': {
            'positive': ['adaptable', 'all climate'],
            'negative': []
        }
    }
    
    climate_score = 0.4  # 基礎分數
    if user_prefs.climate in climate_traits:
        # 正面特質加分
        climate_score += sum(0.2 for term in climate_traits[user_prefs.climate]['positive'] 
                           if term in description)
        # 負面特質減分
        climate_score -= sum(0.2 for term in climate_traits[user_prefs.climate]['negative'] 
                           if term in description)
    
    factors['weather_adaptability'] = min(1.0, max(0.0, climate_score))
    
    # 7. 運動類型匹配評估
    exercise_type_traits = {
        'light_walks': ['calm', 'gentle'],
        'moderate_activity': ['adaptable', 'balanced'],
        'active_training': ['athletic', 'energetic']
    }
    
    if user_prefs.exercise_type in exercise_type_traits:
        match_score = sum(0.25 for trait in exercise_type_traits[user_prefs.exercise_type] 
                         if trait in temperament)
        factors['exercise_match'] = min(1.0, match_score + 0.5)  # 基礎分0.5
    
    # 8. 生活方式適配評估
    lifestyle_score = 0.5  # 基礎分數
    
    # 空間適配
    if user_prefs.living_space == 'apartment':
        if size == 'Small':
            lifestyle_score += 0.2
        elif size == 'Large':
            lifestyle_score -= 0.2
    elif user_prefs.living_space == 'house_large':
        if size in ['Large', 'Giant']:
            lifestyle_score += 0.2
    
    # 時間可用性適配
    time_availability_bonus = {
        'limited': -0.1,
        'moderate': 0,
        'flexible': 0.1
    }
    lifestyle_score += time_availability_bonus.get(user_prefs.time_availability, 0)
    
    factors['lifestyle_fit'] = min(1.0, max(0.0, lifestyle_score))
    
    return factors


def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
    """計算品種與使用者條件的相容性分數的優化版本"""
    try:
        print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
        print(f"Breed info keys: {breed_info.keys()}")
        
        if 'Size' not in breed_info:
            print("Missing Size information")
            raise KeyError("Size information missing")
            

        # def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
        #     """       
        #     主要改進:
        #     1. 更均衡的基礎分數分配
        #     2. 更細緻的空間需求評估
        #     3. 強化運動需求與空間的關聯性
        #     """
        #     # 重新設計基礎分數矩陣,降低普遍分數以增加區別度
        #     base_scores = {
        #         "Small": {
        #             "apartment": 0.85,    # 降低滿分機會
        #             "house_small": 0.80,  # 小型犬不應在大空間得到太高分數
        #             "house_large": 0.75   # 避免小型犬總是得到最高分
        #         },
        #         "Medium": {
        #             "apartment": 0.45,    # 維持對公寓環境的限制
        #             "house_small": 0.75,  # 適中的分數
        #             "house_large": 0.85   # 給予合理的獎勵
        #         },
        #         "Large": {
        #             "apartment": 0.15,    # 加重對大型犬在公寓的限制
        #             "house_small": 0.65,  # 中等適合度
        #             "house_large": 0.90   # 最適合的環境
        #         },
        #         "Giant": {
        #             "apartment": 0.10,    # 更嚴格的限制
        #             "house_small": 0.45,  # 顯著的空間限制
        #             "house_large": 0.95   # 最理想的配對
        #         }
        #     }
            
        #     # 取得基礎分數
        #     base_score = base_scores.get(size, base_scores["Medium"])[living_space]
            
        #     # 運動需求相關的調整更加動態
        #     exercise_adjustments = {
        #         "Very High": {
        #             "apartment": -0.25,    # 加重在受限空間的懲罰
        #             "house_small": -0.15,
        #             "house_large": -0.05
        #         },
        #         "High": {
        #             "apartment": -0.20,
        #             "house_small": -0.10,
        #             "house_large": 0
        #         },
        #         "Moderate": {
        #             "apartment": -0.10,
        #             "house_small": -0.05,
        #             "house_large": 0
        #         },
        #         "Low": {
        #             "apartment": 0.05,     # 低運動需求在小空間反而有優勢
        #             "house_small": 0,
        #             "house_large": -0.05   # 輕微降低評分,因為空間可能過大
        #         }
        #     }
            
        #     # 根據空間類型獲取運動需求調整
        #     adjustment = exercise_adjustments.get(exercise_needs, 
        #                                         exercise_adjustments["Moderate"])[living_space]
            
        #     # 院子效益根據品種大小和運動需求動態調整
        #     if has_yard:
        #         yard_bonus = {
        #             "Giant": 0.20,
        #             "Large": 0.15,
        #             "Medium": 0.10,
        #             "Small": 0.05
        #         }.get(size, 0.10)
                
        #         # 運動需求會影響院子的重要性
        #         if exercise_needs in ["Very High", "High"]:
        #             yard_bonus *= 1.2
        #         elif exercise_needs == "Low":
        #             yard_bonus *= 0.8
                    
        #         current_score = base_score + adjustment + yard_bonus
        #     else:
        #         current_score = base_score + adjustment
                
        #     # 確保分數在合理範圍內,但避免極端值
        #     return min(0.95, max(0.15, current_score))


        # def calculate_exercise_score(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
        #     """
        #     精確評估品種運動需求與使用者運動條件的匹配度
            
        #     Parameters:
        #     breed_needs: 品種的運動需求等級
        #     exercise_time: 使用者能提供的運動時間(分鐘)
        #     exercise_type: 使用者偏好的運動類型
            
        #     Returns:
        #     float: -0.2 到 0.2 之間的匹配分數
        #     """
        #     # 定義更細緻的運動需求等級
        #     exercise_levels = {
        #         'VERY HIGH': {
        #             'min': 120,
        #             'ideal': 150,
        #             'max': 180,
        #             'intensity': 'high',
        #             'sessions': 'multiple',
        #             'preferred_types': ['active_training', 'intensive_exercise']
        #         },
        #         'HIGH': {
        #             'min': 90,
        #             'ideal': 120,
        #             'max': 150,
        #             'intensity': 'moderate_high',
        #             'sessions': 'multiple',
        #             'preferred_types': ['active_training', 'moderate_activity']
        #         },
        #         'MODERATE HIGH': {
        #             'min': 70,
        #             'ideal': 90,
        #             'max': 120,
        #             'intensity': 'moderate',
        #             'sessions': 'flexible',
        #             'preferred_types': ['moderate_activity', 'active_training']
        #         },
        #         'MODERATE': {
        #             'min': 45,
        #             'ideal': 60,
        #             'max': 90,
        #             'intensity': 'moderate',
        #             'sessions': 'flexible',
        #             'preferred_types': ['moderate_activity', 'light_walks']
        #         },
        #         'MODERATE LOW': {
        #             'min': 30,
        #             'ideal': 45,
        #             'max': 70,
        #             'intensity': 'light_moderate',
        #             'sessions': 'flexible',
        #             'preferred_types': ['light_walks', 'moderate_activity']
        #         },
        #         'LOW': {
        #             'min': 15,
        #             'ideal': 30,
        #             'max': 45,
        #             'intensity': 'light',
        #             'sessions': 'single',
        #             'preferred_types': ['light_walks']
        #         }
        #     }
            
        #     # 獲取品種的運動需求配置
        #     breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
            
        #     # 計算時間匹配度(使用更平滑的評分曲線)
        #     if exercise_time >= breed_level['ideal']:
        #         if exercise_time > breed_level['max']:
        #             # 運動時間過長,適度降分
        #             time_score = 0.15 - (0.05 * (exercise_time - breed_level['max']) / 30)
        #         else:
        #             time_score = 0.15
        #     elif exercise_time >= breed_level['min']:
        #         # 在最小需求和理想需求之間,線性計算分數
        #         time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
        #         time_score = 0.05 + (time_ratio * 0.10)
        #     else:
        #         # 運動時間不足,根據差距程度扣分
        #         time_ratio = max(0, exercise_time / breed_level['min'])
        #         time_score = -0.15 * (1 - time_ratio)
            
        #     # 運動類型匹配度評估
        #     type_score = 0.0
        #     if exercise_type in breed_level['preferred_types']:
        #         type_score = 0.05
        #         if exercise_type == breed_level['preferred_types'][0]:
        #             type_score = 0.08  # 最佳匹配類型給予更高分數
            
        #     return max(-0.2, min(0.2, time_score + type_score))


        def calculate_space_score(breed_info: dict, user_prefs: UserPreferences) -> float:
            """
            計算品種與居住空間的匹配程度
            
            這個函數實現了一個全面的空間評分系統,考慮:
            1. 基本空間需求(住所類型與品種大小的匹配)
            2. 樓層因素(特別是公寓住戶)
            3. 戶外活動空間(院子類型及可用性)
            4. 室內活動空間的實際可用性
            5. 品種的特殊空間需求
            
            Parameters:
            -----------
            breed_info: 包含品種特徵的字典,包括體型、活動需求等
            user_prefs: 使用者偏好設定,包含居住條件相關信息
            
            Returns:
            --------
            float: 0.0-1.0 之間的匹配分數
            """
            # 取得品種基本信息
            size = breed_info.get('Size', 'Medium')
            temperament = breed_info.get('Temperament', '').lower()
            exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
            
            # 基礎空間需求評分矩陣 - 考慮品種大小與居住空間的基本匹配度
            base_space_scores = {
                "Small": {
                    "apartment": 0.95,      # 小型犬最適合公寓
                    "house_small": 0.90,    # 小房子也很適合
                    "house_large": 0.85     # 大房子可能過大
                },
                "Medium": {
                    "apartment": 0.60,      # 中型犬在公寓有一定限制
                    "house_small": 0.85,    # 小房子較適合
                    "house_large": 0.95     # 大房子最理想
                },
                "Large": {
                    "apartment": 0.30,      # 大型犬不適合公寓
                    "house_small": 0.70,    # 小房子稍嫌擁擠
                    "house_large": 1.0      # 大房子最理想
                },
                "Giant": {
                    "apartment": 0.20,      # 極大型犬極不適合公寓
                    "house_small": 0.50,    # 小房子明顯不足
                    "house_large": 1.0      # 大房子必需
                }
            }
            
            # 取得基礎空間分數
            base_score = base_space_scores.get(size, base_space_scores["Medium"])[user_prefs.living_space]
            
            # 公寓特殊考量
            if user_prefs.living_space == "apartment":
                # 樓層調整
                floor_penalty = 0
                if user_prefs.living_floor > 1:
                    if size in ["Large", "Giant"]:
                        floor_penalty = min(0.3, (user_prefs.living_floor - 1) * 0.05)
                    elif size == "Medium":
                        floor_penalty = min(0.2, (user_prefs.living_floor - 1) * 0.03)
                    else:
                        floor_penalty = min(0.1, (user_prefs.living_floor - 1) * 0.02)
                base_score = max(0.2, base_score - floor_penalty)
            
            # 戶外空間評估
            yard_scores = {
                "no_yard": 0,
                "shared_yard": 0.1,
                "private_yard": 0.2
            }
            
            # 根據品種大小調整院子加分
            yard_size_multipliers = {
                "Giant": 1.2,
                "Large": 1.1,
                "Medium": 1.0,
                "Small": 0.8
            }
            
            yard_bonus = yard_scores[user_prefs.yard_access] * yard_size_multipliers.get(size, 1.0)
            
            # 活動空間需求評估
            activity_space_score = 0
            if user_prefs.space_for_play:
                if exercise_needs in ["VERY HIGH", "HIGH"]:
                    activity_space_score = 0.15
                elif exercise_needs == "MODERATE":
                    activity_space_score = 0.10
                else:
                    activity_space_score = 0.05
            
            # 品種特性評估
            temperament_adjustments = 0
            if 'active' in temperament or 'energetic' in temperament:
                if user_prefs.living_space == 'apartment':
                    temperament_adjustments -= 0.15
                elif user_prefs.living_space == 'house_small':
                    temperament_adjustments -= 0.05
                    
            if 'calm' in temperament or 'lazy' in temperament:
                if user_prefs.living_space == 'apartment':
                    temperament_adjustments += 0.10
                    
            if 'adaptable' in temperament:
                temperament_adjustments += 0.05
            
            # 家庭環境考量
            if user_prefs.has_children:
                if user_prefs.living_space == 'apartment':
                    # 公寓中有孩童需要更多活動空間
                    if size in ["Large", "Giant"]:
                        base_score *= 0.85
                    elif size == "Medium":
                        base_score *= 0.90
            
            # 整合所有評分因素
            final_score = base_score + yard_bonus + activity_space_score + temperament_adjustments
            
            # 確保最終分數在合理範圍內
            return max(0.15, min(1.0, final_score))


        def calculate_exercise_score(breed_needs: str, exercise_time: int, user_prefs: 'UserPreferences') -> float:
            """
            計算品種運動需求與使用者條件的匹配分數
            
            這個函數實現了一個精細的運動評分系統,考慮:
            1. 運動時間的匹配度(0-180分鐘)
            2. 運動強度的適配性
            3. 品種特性對運動的特殊需求
            4. 生活方式的整體活躍度
            
            Parameters:
            -----------
            breed_needs: 品種的運動需求等級
            exercise_time: 使用者能提供的運動時間(分鐘)
            user_prefs: 使用者偏好設定,包含運動類型和強度等信息
            
            Returns:
            --------
            float: 0.0-1.0 之間的匹配分數
            """
            # 定義更精確的運動需求標準
            exercise_levels = {
                'VERY HIGH': {
                    'min': 120,
                    'ideal': 150,
                    'max': 180,
                    'intensity_required': 'high',
                    'intensity_factors': {'high': 1.2, 'moderate': 0.8, 'low': 0.6},
                    'type_bonus': {'active_training': 0.15, 'moderate_activity': 0.05, 'light_walks': -0.1}
                },
                'HIGH': {
                    'min': 90,
                    'ideal': 120,
                    'max': 150,
                    'intensity_required': 'moderate',
                    'intensity_factors': {'high': 1.1, 'moderate': 1.0, 'low': 0.7},
                    'type_bonus': {'active_training': 0.1, 'moderate_activity': 0.1, 'light_walks': -0.05}
                },
                'MODERATE': {
                    'min': 60,
                    'ideal': 90,
                    'max': 120,
                    'intensity_required': 'moderate',
                    'intensity_factors': {'high': 1.0, 'moderate': 1.0, 'low': 0.8},
                    'type_bonus': {'active_training': 0.05, 'moderate_activity': 0.1, 'light_walks': 0.05}
                },
                'LOW': {
                    'min': 30,
                    'ideal': 60,
                    'max': 90,
                    'intensity_required': 'low',
                    'intensity_factors': {'high': 0.7, 'moderate': 0.9, 'low': 1.0},
                    'type_bonus': {'active_training': -0.05, 'moderate_activity': 0.05, 'light_walks': 0.1}
                }
            }
            
            # 獲取品種運動需求配置
            breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
            
            # 計算基礎運動時間分數
            def calculate_time_score(time: int, level: dict) -> float:
                if time < level['min']:
                    # 運動時間不足,指數下降
                    return max(0.3, (time / level['min']) ** 1.5)
                elif time < level['ideal']:
                    # 運動時間接近理想,線性增長
                    return 0.7 + 0.3 * ((time - level['min']) / (level['ideal'] - level['min']))
                elif time <= level['max']:
                    # 理想運動時間範圍,高分保持
                    return 1.0
                else:
                    # 運動時間過多,緩慢扣分
                    excess = (time - level['max']) / 30  # 每超過30分鐘扣分
                    return max(0.7, 1.0 - (excess * 0.1))
            
            # 計算運動時間基礎分數
            time_score = calculate_time_score(exercise_time, breed_level)
            
            # 計算運動強度匹配度
            intensity_factor = breed_level['intensity_factors'].get(user_prefs.exercise_intensity, 1.0)
            
            # 運動類型加成
            type_bonus = breed_level['type_bonus'].get(user_prefs.exercise_type, 0)
            
            # 生活方式調整
            lifestyle_adjustments = {
                'sedentary': -0.1,
                'moderate': 0,
                'active': 0.1
            }
            lifestyle_factor = lifestyle_adjustments.get(user_prefs.lifestyle_activity, 0)
            
            # 整合所有因素
            final_score = time_score * intensity_factor + type_bonus + lifestyle_factor
            
            # 確保分數在合理範圍內
            return max(0.1, min(1.0, final_score))


        def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
            """
            計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
            這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
            """
            # 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
            base_scores = {
                "High": {
                    "low": 0.20,      # 高需求對低承諾極不合適,顯著降低初始分數
                    "medium": 0.65,   # 中等承諾仍有挑戰
                    "high": 1.0       # 高承諾最適合
                },
                "Moderate": {
                    "low": 0.45,      # 中等需求對低承諾有困難
                    "medium": 0.85,   # 較好的匹配
                    "high": 0.95      # 高承諾會有餘力
                },
                "Low": {
                    "low": 0.90,      # 低需求對低承諾很合適
                    "medium": 0.85,   # 略微降低以反映可能過度投入
                    "high": 0.80      # 可能造成資源浪費
                }
            }
        
            # 取得基礎分數
            base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
        
            # 根據品種大小調整美容工作量
            size_adjustments = {
                "Giant": {
                    "low": -0.35,     # 大型犬的美容工作量顯著增加
                    "medium": -0.20,
                    "high": -0.10
                },
                "Large": {
                    "low": -0.25,
                    "medium": -0.15,
                    "high": -0.05
                },
                "Medium": {
                    "low": -0.15,
                    "medium": -0.10,
                    "high": 0
                },
                "Small": {
                    "low": -0.10,
                    "medium": -0.05,
                    "high": 0
                }
            }
        
            # 應用體型調整
            size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
            current_score = base_score + size_adjustment
        
            # 特殊毛髮類型的額外調整
            def get_coat_adjustment(breed_description: str, commitment: str) -> float:
                """
                評估特殊毛髮類型所需的額外維護工作
                """
                adjustments = 0
                
                # 長毛品種需要更多維護
                if 'long coat' in breed_description.lower():
                    coat_penalties = {
                        'low': -0.20,
                        'medium': -0.15,
                        'high': -0.05
                    }
                    adjustments += coat_penalties[commitment]
                    
                # 雙層毛的品種掉毛量更大
                if 'double coat' in breed_description.lower():
                    double_coat_penalties = {
                        'low': -0.15,
                        'medium': -0.10,
                        'high': -0.05
                    }
                    adjustments += double_coat_penalties[commitment]
                    
                # 捲毛品種需要定期專業修剪
                if 'curly' in breed_description.lower():
                    curly_penalties = {
                        'low': -0.15,
                        'medium': -0.10,
                        'high': -0.05
                    }
                    adjustments += curly_penalties[commitment]
                    
                return adjustments
        
            # 季節性考量
            def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
                """
                評估季節性掉毛對美容需求的影響
                """
                if 'seasonal shedding' in breed_description.lower():
                    seasonal_penalties = {
                        'low': -0.15,
                        'medium': -0.10,
                        'high': -0.05
                    }
                    return seasonal_penalties[commitment]
                return 0
        
            # 專業美容需求評估
            def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
                """
                評估需要專業美容服務的影響
                """
                if 'professional grooming' in breed_description.lower():
                    grooming_penalties = {
                        'low': -0.20,
                        'medium': -0.15,
                        'high': -0.05
                    }
                    return grooming_penalties[commitment]
                return 0
        
            # 應用所有額外調整
            # 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整
            coat_adjustment = get_coat_adjustment("", user_commitment)
            seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
            professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
            
            final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
        
            # 確保分數在有意義的範圍內,但允許更大的差異
            return max(0.1, min(1.0, final_score))


        # def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
        #     """
        #     計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
            
        #     重要改進:
        #     1. 擴大基礎分數差異
        #     2. 加重困難特徵的懲罰
        #     3. 更細緻的品種特性評估
        #     """
        #     # 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
        #     base_scores = {
        #         "High": {
        #             "beginner": 0.10,      # 降低起始分,高難度品種對新手幾乎不推薦
        #             "intermediate": 0.60,   # 中級玩家仍需謹慎
        #             "advanced": 1.0        # 資深者能完全勝任
        #         },
        #         "Moderate": {
        #             "beginner": 0.35,      # 適中難度對新手仍具挑戰
        #             "intermediate": 0.80,   # 中級玩家較適合
        #             "advanced": 1.0        # 資深者完全勝任
        #         },
        #         "Low": {
        #             "beginner": 0.90,      # 新手友善品種
        #             "intermediate": 0.95,   # 中級玩家幾乎完全勝任
        #             "advanced": 1.0        # 資深者完全勝任
        #         }
        #     }
            
        #     # 取得基礎分數
        #     score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
            
        #     temperament_lower = temperament.lower()
        #     temperament_adjustments = 0.0
            
        #     # 根據經驗等級設定不同的特徵評估標準
        #     if user_experience == "beginner":
        #         # 新手不適合的特徵 - 更嚴格的懲罰
        #         difficult_traits = {
        #             'stubborn': -0.30,        # 固執性格嚴重影響新手
        #             'independent': -0.25,      # 獨立性高的品種不適合新手
        #             'dominant': -0.25,         # 支配性強的品種需要經驗處理
        #             'strong-willed': -0.20,    # 強勢性格需要技巧管理
        #             'protective': -0.20,       # 保護性強需要適當訓練
        #             'aloof': -0.15,           # 冷漠性格需要耐心培養
        #             'energetic': -0.15,       # 活潑好動需要經驗引導
        #             'aggressive': -0.35        # 攻擊傾向極不適合新手
        #         }
                
        #         # 新手友善的特徵 - 適度的獎勵
        #         easy_traits = {
        #             'gentle': 0.05,            # 溫和性格適合新手
        #             'friendly': 0.05,          # 友善性格容易相處
        #             'eager to please': 0.08,   # 願意服從較容易訓練
        #             'patient': 0.05,           # 耐心的特質有助於建立關係
        #             'adaptable': 0.05,         # 適應性強較容易照顧
        #             'calm': 0.06              # 冷靜的性格較好掌握
        #         }
                
        #         # 計算特徵調整
        #         for trait, penalty in difficult_traits.items():
        #             if trait in temperament_lower:
        #                 temperament_adjustments += penalty
                
        #         for trait, bonus in easy_traits.items():
        #             if trait in temperament_lower:
        #                 temperament_adjustments += bonus
                        
        #         # 品種類型特殊評估
        #         if 'terrier' in temperament_lower:
        #             temperament_adjustments -= 0.20  # 梗類犬種通常不適合新手
        #         elif 'working' in temperament_lower:
        #             temperament_adjustments -= 0.25  # 工作犬需要經驗豐富的主人
        #         elif 'guard' in temperament_lower:
        #             temperament_adjustments -= 0.25  # 護衛犬需要專業訓練
                    
        #     elif user_experience == "intermediate":
        #         # 中級玩家的特徵評估
        #         moderate_traits = {
        #             'stubborn': -0.15,        # 仍然需要注意,但懲罰較輕
        #             'independent': -0.10,
        #             'intelligent': 0.08,      # 聰明的特質可以好好發揮
        #             'athletic': 0.06,         # 運動能力可以適當訓練
        #             'versatile': 0.07,        # 多功能性可以開發
        #             'protective': -0.08       # 保護性仍需注意
        #         }
                
        #         for trait, adjustment in moderate_traits.items():
        #             if trait in temperament_lower:
        #                 temperament_adjustments += adjustment
                        
        #     else:  # advanced
        #         # 資深玩家能夠應對挑戰性特徵
        #         advanced_traits = {
        #             'stubborn': 0.05,         # 困難特徵反而成為優勢
        #             'independent': 0.05,
        #             'intelligent': 0.10,
        #             'protective': 0.05,
        #             'strong-willed': 0.05
        #         }
                
        #         for trait, bonus in advanced_traits.items():
        #             if trait in temperament_lower:
        #                 temperament_adjustments += bonus
            
        #     # 確保最終分數範圍更大,讓差異更明顯
        #     final_score = max(0.05, min(1.0, score + temperament_adjustments))
            
        #     return final_score


        def calculate_experience_score(breed_info: dict, user_prefs: UserPreferences) -> float:
            """
            計算飼主經驗與品種需求的匹配分數
            
            這個函數實現了一個全面的經驗評分系統,考慮:
            1. 品種的基本照護難度
            2. 飼主的經驗水平
            3. 特殊照護需求(如健康問題、行為訓練)
            4. 時間投入與生活方式的匹配
            5. 家庭環境對照護的影響
            
            特別注意:
            - 新手飼主面對高難度品種時的顯著降分
            - 資深飼主照顧簡單品種的微幅降分
            - 特殊需求品種的額外評估
            
            Parameters:
            -----------
            breed_info: 包含品種特徵的字典
            user_prefs: 使用者偏好設定
            
            Returns:
            --------
            float: 0.0-1.0 之間的匹配分數
            """
            care_level = breed_info.get('Care Level', 'MODERATE').upper()
            temperament = breed_info.get('Temperament', '').lower()
            health_issues = breed_info.get('Health Issues', '').lower()
            
            # 基礎照護難度評分矩陣
            base_experience_scores = {
                "HIGH": {
                    "beginner": 0.30,      # 高難度品種對新手極具挑戰
                    "intermediate": 0.70,   # 中級飼主需要額外努力
                    "advanced": 0.95       # 資深飼主最適合
                },
                "MODERATE": {
                    "beginner": 0.60,      # 中等難度對新手有一定挑戰
                    "intermediate": 0.85,   # 中級飼主較適合
                    "advanced": 0.90       # 資深飼主可能稍嫌簡單
                },
                "LOW": {
                    "beginner": 0.90,      # 低難度適合新手
                    "intermediate": 0.85,   # 中級飼主可能感覺無趣
                    "advanced": 0.80       # 資深飼主可能缺乏挑戰
                }
            }
            
            # 取得基礎經驗分數
            base_score = base_experience_scores.get(care_level, 
                                                  base_experience_scores["MODERATE"])[user_prefs.experience_level]
            
            # 時間可用性評估
            time_adjustments = {
                "limited": {
                    "HIGH": -0.20,
                    "MODERATE": -0.15,
                    "LOW": -0.10
                },
                "moderate": {
                    "HIGH": -0.10,
                    "MODERATE": -0.05,
                    "LOW": 0
                },
                "flexible": {
                    "HIGH": 0,
                    "MODERATE": 0.05,
                    "LOW": 0.10
                }
            }
            
            time_adjustment = time_adjustments[user_prefs.time_availability][care_level]
            
            # 行為特徵評估
            def evaluate_temperament(temp: str, exp_level: str) -> float:
                """評估品種性格特徵與飼主經驗的匹配度"""
                score = 0
                
                # 困難特徵評估
                difficult_traits = {
                    'stubborn': {'beginner': -0.20, 'intermediate': -0.10, 'advanced': 0},
                    'independent': {'beginner': -0.15, 'intermediate': -0.08, 'advanced': 0},
                    'dominant': {'beginner': -0.20, 'intermediate': -0.10, 'advanced': -0.05},
                    'aggressive': {'beginner': -0.25, 'intermediate': -0.15, 'advanced': -0.10}
                }
                
                # 友善特徵評估
                friendly_traits = {
                    'friendly': {'beginner': 0.10, 'intermediate': 0.05, 'advanced': 0},
                    'gentle': {'beginner': 0.10, 'intermediate': 0.05, 'advanced': 0},
                    'easy to train': {'beginner': 0.15, 'intermediate': 0.10, 'advanced': 0.05}
                }
                
                # 計算特徵分數
                for trait, penalties in difficult_traits.items():
                    if trait in temp:
                        score += penalties[exp_level]
                        
                for trait, bonuses in friendly_traits.items():
                    if trait in temp:
                        score += bonuses[exp_level]
                
                return score
            
            temperament_adjustment = evaluate_temperament(temperament, user_prefs.experience_level)
            
            # 健康問題評估
            def evaluate_health_needs(health: str, exp_level: str) -> float:
                """評估健康問題的照護難度"""
                score = 0
                serious_conditions = ['hip dysplasia', 'heart disease', 'cancer']
                moderate_conditions = ['allergies', 'skin problems', 'ear infections']
                
                # 根據經驗等級調整健康問題的影響
                health_impact = {
                    'beginner': {'serious': -0.20, 'moderate': -0.10},
                    'intermediate': {'serious': -0.15, 'moderate': -0.05},
                    'advanced': {'serious': -0.10, 'moderate': -0.03}
                }
                
                for condition in serious_conditions:
                    if condition in health:
                        score += health_impact[exp_level]['serious']
                        
                for condition in moderate_conditions:
                    if condition in health:
                        score += health_impact[exp_level]['moderate']
                
                return score
            
            health_adjustment = evaluate_health_needs(health_issues, user_prefs.experience_level)
            
            # 家庭環境考量
            family_adjustment = 0
            if user_prefs.has_children:
                if user_prefs.children_age == 'toddler':
                    if user_prefs.experience_level == 'beginner':
                        family_adjustment -= 0.15
                    elif user_prefs.experience_level == 'intermediate':
                        family_adjustment -= 0.10
                elif user_prefs.children_age == 'school_age':
                    if user_prefs.experience_level == 'beginner':
                        family_adjustment -= 0.10
            
            # 生活方式匹配度
            lifestyle_adjustments = {
                'sedentary': -0.10 if care_level == 'HIGH' else 0,
                'moderate': 0,
                'active': 0.10 if care_level in ['HIGH', 'MODERATE'] else 0
            }
            lifestyle_adjustment = lifestyle_adjustments[user_prefs.lifestyle_activity]
            
            # 整合所有評分因素
            final_score = base_score + time_adjustment + temperament_adjustment + \
                         health_adjustment + family_adjustment + lifestyle_adjustment
            
            # 確保最終分數在合理範圍內
            return max(0.15, min(1.0, final_score))
    

        def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
            """
            計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
            
            重要改進:
            1. 根據使用者的健康敏感度調整分數
            2. 更嚴格的健康問題評估
            3. 考慮多重健康問題的累積效應
            4. 加入遺傳疾病的特別考量
            """
            if breed_name not in breed_health_info:
                return 0.5
        
            health_notes = breed_health_info[breed_name]['health_notes'].lower()
            
            # 嚴重健康問題 - 加重扣分
            severe_conditions = {
                'hip dysplasia': -0.25,           # 髖關節發育不良,影響生活品質
                'heart disease': -0.25,           # 心臟疾病,需要長期治療
                'progressive retinal atrophy': -0.20,  # 進行性視網膜萎縮,導致失明
                'bloat': -0.22,                   # 胃扭轉,致命風險
                'epilepsy': -0.20,                # 癲癇,需要長期藥物控制
                'degenerative myelopathy': -0.20,  # 脊髓退化,影響行動能力
                'von willebrand disease': -0.18    # 血液凝固障礙
            }
            
            # 中度健康問題 - 適度扣分
            moderate_conditions = {
                'allergies': -0.12,               # 過敏問題,需要持續關注
                'eye problems': -0.15,            # 眼睛問題,可能需要手術
                'joint problems': -0.15,          # 關節問題,影響運動能力
                'hypothyroidism': -0.12,          # 甲狀腺功能低下,需要藥物治療
                'ear infections': -0.10,          # 耳道感染,需要定期清理
                'skin issues': -0.12              # 皮膚問題,需要特殊護理
            }
            
            # 輕微健康問題 - 輕微扣分
            minor_conditions = {
                'dental issues': -0.08,           # 牙齒問題,需要定期護理
                'weight gain tendency': -0.08,     # 易胖體質,需要控制飲食
                'minor allergies': -0.06,         # 輕微過敏,可控制
                'seasonal allergies': -0.06       # 季節性過敏
            }
        
            # 計算基礎健康分數
            health_score = 1.0
            
            # 健康問題累積效應計算
            condition_counts = {
                'severe': 0,
                'moderate': 0,
                'minor': 0
            }
            
            # 計算各等級健康問題的數量和影響
            for condition, penalty in severe_conditions.items():
                if condition in health_notes:
                    health_score += penalty
                    condition_counts['severe'] += 1
                    
            for condition, penalty in moderate_conditions.items():
                if condition in health_notes:
                    health_score += penalty
                    condition_counts['moderate'] += 1
                    
            for condition, penalty in minor_conditions.items():
                if condition in health_notes:
                    health_score += penalty
                    condition_counts['minor'] += 1
            
            # 多重問題的額外懲罰(累積效應)
            if condition_counts['severe'] > 1:
                health_score *= (0.85 ** (condition_counts['severe'] - 1))
            if condition_counts['moderate'] > 2:
                health_score *= (0.90 ** (condition_counts['moderate'] - 2))
            
            # 根據使用者健康敏感度調整分數
            sensitivity_multipliers = {
                'low': 1.1,      # 較不在意健康問題
                'medium': 1.0,   # 標準評估
                'high': 0.85     # 非常注重健康問題
            }
            
            health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0)
        
            # 壽命影響評估
            try:
                lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
                years = float(lifespan.split('-')[0])
                if years < 8:
                    health_score *= 0.85   # 短壽命顯著降低分數
                elif years < 10:
                    health_score *= 0.92   # 較短壽命輕微降低分數
                elif years > 13:
                    health_score *= 1.1    # 長壽命適度加分
            except:
                pass
        
            # 特殊健康優勢
            if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
                health_score *= 1.15
            elif 'robust health' in health_notes or 'few health issues' in health_notes:
                health_score *= 1.1
        
            # 確保分數在合理範圍內,但允許更大的分數差異
            return max(0.1, min(1.0, health_score))
            

        # def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
        #     """
        #     計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
        #     """
        #     if breed_name not in breed_noise_info:
        #         return 0.5
        
        #     noise_info = breed_noise_info[breed_name]
        #     noise_level = noise_info['noise_level'].lower()
        #     noise_notes = noise_info['noise_notes'].lower()
        
        #     # 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
        #     base_scores = {
        #         'low': {
        #             'low': 1.0,       # 安靜的狗對低容忍完美匹配
        #             'medium': 0.95,   # 安靜的狗對一般容忍很好
        #             'high': 0.90      # 安靜的狗對高容忍當然可以
        #         },
        #         'medium': {
        #             'low': 0.60,      # 一般吠叫對低容忍較困難
        #             'medium': 0.90,   # 一般吠叫對一般容忍可接受
        #             'high': 0.95      # 一般吠叫對高容忍很好
        #         },
        #         'high': {
        #             'low': 0.25,      # 愛叫的狗對低容忍極不適合
        #             'medium': 0.65,   # 愛叫的狗對一般容忍有挑戰
        #             'high': 0.90      # 愛叫的狗對高容忍可以接受
        #         },
        #         'varies': {
        #             'low': 0.50,      # 不確定的情況對低容忍風險較大
        #             'medium': 0.75,   # 不確定的情況對一般容忍可嘗試
        #             'high': 0.85      # 不確定的情況對高容忍問題較小
        #         }
        #     }
        
        #     # 取得基礎分數
        #     base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
        
        #     # 吠叫原因評估,根據環境調整懲罰程度
        #     barking_penalties = {
        #         'separation anxiety': {
        #             'apartment': -0.30,    # 在公寓對鄰居影響更大
        #             'house_small': -0.25,
        #             'house_large': -0.20
        #         },
        #         'excessive barking': {
        #             'apartment': -0.25,
        #             'house_small': -0.20,
        #             'house_large': -0.15
        #         },
        #         'territorial': {
        #             'apartment': -0.20,    # 在公寓更容易被觸發
        #             'house_small': -0.15,
        #             'house_large': -0.10
        #         },
        #         'alert barking': {
        #             'apartment': -0.15,    # 公寓環境刺激較多
        #             'house_small': -0.10,
        #             'house_large': -0.08
        #         },
        #         'attention seeking': {
        #             'apartment': -0.15,
        #             'house_small': -0.12,
        #             'house_large': -0.10
        #         }
        #     }
        
        #     # 計算環境相關的吠叫懲罰
        #     living_space = user_prefs.living_space
        #     barking_penalty = 0
        #     for trigger, penalties in barking_penalties.items():
        #         if trigger in noise_notes:
        #             barking_penalty += penalties.get(living_space, -0.15)
        
        #     # 特殊情況評估
        #     special_adjustments = 0
        #     if user_prefs.has_children:
        #         # 孩童年齡相關調整
        #         child_age_adjustments = {
        #             'toddler': {
        #                 'high': -0.20,     # 幼童對吵鬧更敏感
        #                 'medium': -0.15,
        #                 'low': -0.05
        #             },
        #             'school_age': {
        #                 'high': -0.15,
        #                 'medium': -0.10,
        #                 'low': -0.05
        #             },
        #             'teenager': {
        #                 'high': -0.10,
        #                 'medium': -0.05,
        #                 'low': -0.02
        #             }
        #         }
                
        #         # 根據孩童年齡和噪音等級調整
        #         age_adj = child_age_adjustments.get(user_prefs.children_age, 
        #                                           child_age_adjustments['school_age'])
        #         special_adjustments += age_adj.get(noise_level, -0.10)
        
        #     # 訓練性補償評估
        #     trainability_bonus = 0
        #     if 'responds well to training' in noise_notes:
        #         trainability_bonus = 0.12
        #     elif 'can be trained' in noise_notes:
        #         trainability_bonus = 0.08
        #     elif 'difficult to train' in noise_notes:
        #         trainability_bonus = 0.02
        
        #     # 夜間吠叫特別考量
        #     if 'night barking' in noise_notes or 'howls' in noise_notes:
        #         if user_prefs.living_space == 'apartment':
        #             special_adjustments -= 0.15
        #         elif user_prefs.living_space == 'house_small':
        #             special_adjustments -= 0.10
        #         else:
        #             special_adjustments -= 0.05
        
        #     # 計算最終分數,確保更大的分數範圍
        #     final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
        #     return max(0.1, min(1.0, final_score))


        def calculate_noise_score(breed_info: dict, user_prefs: UserPreferences) -> float:
            """
            計算品種噪音特性與使用者需求的匹配分數
            
            這個函數建立了一個細緻的噪音評估系統,考慮多個關鍵因素:
            1. 品種的基本吠叫傾向
            2. 居住環境對噪音的敏感度
            3. 吠叫的情境和原因
            4. 鄰居影響的考量
            5. 家庭成員的噪音承受度
            6. 訓練可能性的評估
            
            特別注意:
            - 公寓環境的嚴格標準
            - 有幼童時的特殊考量
            - 獨處時間的影響
            - 品種的可訓練性
            
            Parameters:
            -----------
            breed_info: 包含品種特性的字典,包括吠叫傾向和訓練難度
            user_prefs: 使用者偏好設定,包含噪音容忍度和環境因素
            
            Returns:
            --------
            float: 0.0-1.0 之間的匹配分數,分數越高表示噪音特性越符合需求
            """
            
            # 提取基本資訊
            noise_level = breed_info.get('Noise Level', 'MODERATE').upper()
            barking_tendency = breed_info.get('Barking Tendency', 'MODERATE').upper()
            trainability = breed_info.get('Trainability', 'MODERATE').upper()
            temperament = breed_info.get('Temperament', '').lower()
            
            # 基礎噪音評分矩陣 - 考慮環境和噪音容忍度
            base_noise_scores = {
                "LOW": {
                    "apartment": {
                        "low": 1.0,     # 安靜的狗在公寓最理想
                        "medium": 0.95,
                        "high": 0.90
                    },
                    "house_small": {
                        "low": 0.95,
                        "medium": 0.90,
                        "high": 0.85
                    },
                    "house_large": {
                        "low": 0.90,
                        "medium": 0.85,
                        "high": 0.80    # 太安靜可能不夠警戒
                    }
                },
                "MODERATE": {
                    "apartment": {
                        "low": 0.60,
                        "medium": 0.80,
                        "high": 0.85
                    },
                    "house_small": {
                        "low": 0.70,
                        "medium": 0.85,
                        "high": 0.90
                    },
                    "house_large": {
                        "low": 0.75,
                        "medium": 0.90,
                        "high": 0.95
                    }
                },
                "HIGH": {
                    "apartment": {
                        "low": 0.20,    # 吵鬧的狗在公寓極不適合
                        "medium": 0.40,
                        "high": 0.60
                    },
                    "house_small": {
                        "low": 0.30,
                        "medium": 0.50,
                        "high": 0.70
                    },
                    "house_large": {
                        "low": 0.40,
                        "medium": 0.60,
                        "high": 0.80
                    }
                }
            }
            
            # 取得基礎噪音分數
            base_score = base_noise_scores.get(noise_level, base_noise_scores["MODERATE"])\
                        [user_prefs.living_space][user_prefs.noise_tolerance]
            
            # 吠叫情境評估
            def evaluate_barking_context(temp: str, living_space: str) -> float:
                """評估不同情境下的吠叫問題嚴重度"""
                context_score = 0
                
                # 不同吠叫原因的權重
                barking_contexts = {
                    'separation anxiety': {
                        'apartment': -0.25,
                        'house_small': -0.20,
                        'house_large': -0.15
                    },
                    'territorial': {
                        'apartment': -0.20,
                        'house_small': -0.15,
                        'house_large': -0.10
                    },
                    'alert barking': {
                        'apartment': -0.15,
                        'house_small': -0.10,
                        'house_large': -0.05
                    },
                    'attention seeking': {
                        'apartment': -0.15,
                        'house_small': -0.10,
                        'house_large': -0.08
                    }
                }
                
                for context, penalties in barking_contexts.items():
                    if context in temp:
                        context_score += penalties[living_space]
                
                return context_score
            
            # 計算吠叫情境的影響
            barking_context_adjustment = evaluate_barking_context(temperament, user_prefs.living_space)
            
            # 訓練可能性評估
            trainability_adjustments = {
                "HIGH": 0.10,      # 容易訓練可以改善吠叫問題
                "MODERATE": 0.05,
                "LOW": -0.05      # 難以訓練則較難改善
            }
            trainability_adjustment = trainability_adjustments.get(trainability, 0)
            
            # 家庭環境考量
            family_adjustment = 0
            if user_prefs.has_children:
                child_age_factors = {
                    'toddler': -0.20,    # 幼童需要安靜環境
                    'school_age': -0.15,
                    'teenager': -0.10
                }
                family_adjustment = child_age_factors.get(user_prefs.children_age, -0.15)
                
                # 根據噪音等級調整影響程度
                if noise_level == "HIGH":
                    family_adjustment *= 1.5
                elif noise_level == "LOW":
                    family_adjustment *= 0.5
            
            # 獨處時間的影響
            alone_time_adjustment = 0
            if user_prefs.home_alone_time > 6:
                if 'separation anxiety' in temperament or noise_level == "HIGH":
                    alone_time_adjustment = -0.15
                elif noise_level == "MODERATE":
                    alone_time_adjustment = -0.10
            
            # 鄰居影響評估(特別是公寓環境)
            neighbor_adjustment = 0
            if user_prefs.living_space == "apartment":
                if noise_level == "HIGH":
                    neighbor_adjustment = -0.15
                elif noise_level == "MODERATE":
                    neighbor_adjustment = -0.10
                    
                # 樓層因素
                if user_prefs.living_floor > 1:
                    neighbor_adjustment -= min(0.10, (user_prefs.living_floor - 1) * 0.02)
            
            # 整合所有評分因素
            final_score = base_score + barking_context_adjustment + trainability_adjustment + \
                         family_adjustment + alone_time_adjustment + neighbor_adjustment
            
            # 確保最終分數在合理範圍內
            return max(0.15, min(1.0, final_score))

    except Exception as e:
        print(f"Error calculating compatibility score: {str(e)}")
        return 60.0  # 返回最低分數作為默認值


def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
    """計算品種與環境的適應性加成"""
    adaptability_score = 0.0
    description = breed_info.get('Description', '').lower()
    temperament = breed_info.get('Temperament', '').lower()
    
    # 環境適應性評估
    if user_prefs.living_space == 'apartment':
        if 'adaptable' in temperament or 'apartment' in description:
            adaptability_score += 0.1
        if breed_info.get('Size') == 'Small':
            adaptability_score += 0.05
    elif user_prefs.living_space == 'house_large':
        if 'active' in temperament or 'energetic' in description:
            adaptability_score += 0.1
            
    # 氣候適應性
    if user_prefs.climate in description or user_prefs.climate in temperament:
        adaptability_score += 0.05
        
    return min(0.2, adaptability_score)


def calculate_breed_matching(breed_info: dict, user_prefs: UserPreferences) -> dict:
    """計算品種的整體評分與匹配度"""
    try:
        print("\n=== 開始計算品種相容性分數 ===")
        print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
        print(f"品種信息: {breed_info}")
        print(f"使用者偏好: {vars(user_prefs)}")

        # 計算所有基礎分數並整合到字典中
        scores = {
            'space': calculate_space_score(breed_info, user_prefs),
            'exercise': calculate_exercise_score(
                breed_info.get('Exercise Needs', 'Moderate'),
                user_prefs.exercise_time,
                user_prefs
            ),
            'grooming': calculate_grooming_score(
                breed_info.get('Grooming Needs', 'Moderate'),
                user_prefs.grooming_commitment.lower(),
                breed_info['Size']
            ),
            'experience': calculate_experience_score(breed_info, user_prefs),
            'health': calculate_health_score(
                breed_info.get('Breed', ''),
                user_prefs
            ),
            'noise': calculate_noise_score(
                breed_info,
                user_prefs
            )
        }

        # 計算最終相容性分數
        final_score = calculate_compatibility_score(scores, user_prefs, breed_info)
        
        # 計算環境適應性加成
        adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
        
        # 整合最終分數和加成
        final_score = (final_score * 0.9) + (adaptability_bonus * 0.1)
        final_score = amplify_score_extreme(final_score)
        
        # 更新並返回完整的評分結果
        scores.update({
            'overall': final_score,
            'adaptability_bonus': adaptability_bonus
        })
        
        return scores
        
    except Exception as e:
        print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
        print(f"錯誤類型: {type(e).__name__}")
        print(f"錯誤訊息: {str(e)}")
        print(f"完整錯誤追蹤:")
        print(traceback.format_exc())
        return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}


# def calculate_breed_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
#     """
#     改進的品種相容性評分系統
#     通過更細緻的特徵評估和動態權重調整,自然產生分數差異
#     """
#     # 評估關鍵特徵的匹配度,使用更極端的調整係數
#     def evaluate_key_features():
#         # 空間適配性評估
#         space_multiplier = 1.0
#         if user_prefs.living_space == 'apartment':
#             if breed_info['Size'] == 'Giant':
#                 space_multiplier = 0.3  # 嚴重不適合
#             elif breed_info['Size'] == 'Large':
#                 space_multiplier = 0.4  # 明顯不適合
#             elif breed_info['Size'] == 'Small':
#                 space_multiplier = 1.4  # 明顯優勢
        
#         # 運動需求評估
#         exercise_multiplier = 1.0
#         exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
#         if exercise_needs == 'VERY HIGH':
#             if user_prefs.exercise_time < 60:
#                 exercise_multiplier = 0.3  # 嚴重不足
#             elif user_prefs.exercise_time > 150:
#                 exercise_multiplier = 1.5  # 完美匹配
#         elif exercise_needs == 'LOW' and user_prefs.exercise_time > 150:
#             exercise_multiplier = 0.5  # 運動過度

#         return space_multiplier, exercise_multiplier

#     # 計算經驗匹配度
#     def evaluate_experience():
#         exp_multiplier = 1.0
#         care_level = breed_info.get('Care Level', 'MODERATE')
        
#         if care_level == 'High':
#             if user_prefs.experience_level == 'beginner':
#                 exp_multiplier = 0.4
#             elif user_prefs.experience_level == 'advanced':
#                 exp_multiplier = 1.3
#         elif care_level == 'Low':
#             if user_prefs.experience_level == 'advanced':
#                 exp_multiplier = 0.9  # 略微降低評分,因為可能不夠有挑戰性
                
#         return exp_multiplier

#     # 取得特徵調整係數
#     space_mult, exercise_mult = evaluate_key_features()
#     exp_mult = evaluate_experience()

#     # 調整基礎分數
#     adjusted_scores = {
#         'space': scores['space'] * space_mult,
#         'exercise': scores['exercise'] * exercise_mult,
#         'experience': scores['experience'] * exp_mult,
#         'grooming': scores['grooming'],
#         'health': scores['health'],
#         'noise': scores['noise']
#     }

#     # 計算加權平均,關鍵特徵佔更大權重
#     weights = {
#         'space': 0.35,
#         'exercise': 0.30,
#         'experience': 0.20,
#         'grooming': 0.15,
#         'health': 0.10,
#         'noise': 0.10
#     }

#     # 動態調整權重
#     if user_prefs.living_space == 'apartment':
#         weights['space'] *= 1.5
#         weights['noise'] *= 1.3
    
#     if abs(user_prefs.exercise_time - 120) > 60:  # 運動時間極端情況
#         weights['exercise'] *= 1.4

#     # 正規化權重
#     total_weight = sum(weights.values())
#     normalized_weights = {k: v/total_weight for k, v in weights.items()}

#     # 計算最終分數
#     final_score = sum(adjusted_scores[k] * normalized_weights[k] for k in scores.keys())

#     # 品種特性加成
#     breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
    
#     # 整合最終分數,保持在0-1範圍內
#     return min(1.0, max(0.0, (final_score * 0.85) + (breed_bonus * 0.15)))


# def amplify_score_extreme(score: float) -> float:
#     """
#     改進的分數轉換函數
#     提供更大的分數範圍和更明顯的差異
    
#     轉換邏輯:
#     - 極差匹配 (0.0-0.3) -> 60-68%
#     - 較差匹配 (0.3-0.5) -> 68-75%
#     - 中等匹配 (0.5-0.7) -> 75-85%
#     - 良好匹配 (0.7-0.85) -> 85-92%
#     - 優秀匹配 (0.85-1.0) -> 92-95%
#     """
#     if score < 0.3:
#         # 極差匹配:快速線性增長
#         return 0.60 + (score / 0.3) * 0.08
#     elif score < 0.5:
#         # 較差匹配:緩慢增長
#         position = (score - 0.3) / 0.2
#         return 0.68 + position * 0.07
#     elif score < 0.7:
#         # 中等匹配:穩定線性增長
#         position = (score - 0.5) / 0.2
#         return 0.75 + position * 0.10
#     elif score < 0.85:
#         # 良好匹配:加速增長
#         position = (score - 0.7) / 0.15
#         return 0.85 + position * 0.07
#     else:
#         # 優秀匹配:最後衝刺
#         position = (score - 0.85) / 0.15
#         return 0.92 + position * 0.03


def calculate_compatibility_score(scores: dict, user_prefs: UserPreferences, breed_info: dict) -> float:
    """
    計算品種與使用者的整體相容性分數
    
    這是推薦系統的核心評分函數,負責:
    1. 智能整合各面向評分
    2. 動態調整評分權重
    3. 處理關鍵條件的優先級
    4. 產生最終的匹配分數
    
    評分策略:
    - 基礎分數:由各項指標的加權平均獲得
    - 動態權重:根據用戶情況動態調整各項權重
    - 關鍵條件:某些條件不滿足會顯著降低總分
    - 加成系統:特殊匹配會提供額外加分
    
    Parameters:
    -----------
    scores: 包含各項評分的字典
    user_prefs: 使用者偏好設定
    breed_info: 品種特性信息
    
    Returns:
    --------
    float: 60.0-95.0 之間的最終匹配分數
    """
    def calculate_dynamic_weights() -> dict:
        """計算動態權重分配"""
        # 基礎權重設定
        weights = {
            'space': 0.20,
            'exercise': 0.20,
            'experience': 0.15,
            'grooming': 0.15,
            'health': 0.15,
            'noise': 0.15
        }
        
        # 公寓住戶權重調整
        if user_prefs.living_space == "apartment":
            weights['space'] *= 1.3
            weights['noise'] *= 1.3
            weights['exercise'] *= 0.8
        
        # 有幼童時的權重調整
        if user_prefs.has_children and user_prefs.children_age == 'toddler':
            weights['experience'] *= 1.3
            weights['noise'] *= 1.2
            weights['health'] *= 1.2
        
        # 新手飼主的權重調整
        if user_prefs.experience_level == 'beginner':
            weights['experience'] *= 1.4
            weights['health'] *= 1.2
            weights['grooming'] *= 1.2
        
        # 健康敏感度的權重調整
        if user_prefs.health_sensitivity == 'high':
            weights['health'] *= 1.3
        
        # 運動時間極端情況的權重調整
        if abs(user_prefs.exercise_time - 120) > 60:
            weights['exercise'] *= 1.3
        
        # 正規化權重
        total = sum(weights.values())
        return {k: v/total for k, v in weights.items()}
    
    def calculate_critical_factors() -> float:
        """評估關鍵因素的影響"""
        critical_score = 1.0
        
        # 空間關鍵條件
        if user_prefs.living_space == "apartment":
            if breed_info['Size'] == 'Giant':
                critical_score *= 0.7
            elif breed_info['Size'] == 'Large':
                critical_score *= 0.8
        
        # 運動需求關鍵條件
        exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
        if exercise_needs == 'VERY HIGH' and user_prefs.exercise_time < 60:
            critical_score *= 0.75
        elif exercise_needs == 'HIGH' and user_prefs.exercise_time < 45:
            critical_score *= 0.8
        
        # 新手飼主關鍵條件
        if user_prefs.experience_level == 'beginner':
            if 'aggressive' in breed_info.get('Temperament', '').lower():
                critical_score *= 0.7
            elif 'dominant' in breed_info.get('Temperament', '').lower():
                critical_score *= 0.8
        
        # 噪音關鍵條件
        if user_prefs.living_space == "apartment" and \
           breed_info.get('Noise Level', 'MODERATE').upper() == 'HIGH' and \
           user_prefs.noise_tolerance == 'low':
            critical_score *= 0.7
        
        return critical_score
    
    def calculate_bonus_factors() -> float:
        """計算額外加分因素"""
        bonus = 1.0
        temperament = breed_info.get('Temperament', '').lower()
        
        # 完美匹配加分
        perfect_matches = 0
        for score in scores.values():
            if score > 0.9:
                perfect_matches += 1
        
        if perfect_matches >= 3:
            bonus += 0.05
        
        # 特殊匹配加分
        if user_prefs.has_children and 'good with children' in temperament:
            bonus += 0.03
        
        if user_prefs.living_space == "apartment" and 'adaptable' in temperament:
            bonus += 0.03
        
        if user_prefs.experience_level == 'beginner' and 'easy to train' in temperament:
            bonus += 0.03
        
        return min(1.15, bonus)
    
    # 計算動態權重
    weights = calculate_dynamic_weights()
    
    # 計算基礎加權分數
    base_score = sum(scores[k] * weights[k] for k in scores.keys())
    
    # 應用關鍵因素
    critical_factor = calculate_critical_factors()
    
    # 計算加分
    bonus_factor = calculate_bonus_factors()
    
    # 計算最終原始分數
    raw_score = base_score * critical_factor * bonus_factor
    
    # 轉換為最終分數(60-95範圍)
    final_score = 60 + (raw_score * 35)
    
    # 確保分數在合理範圍內並保留兩位小數
    return round(max(60.0, min(95.0, final_score)), 2)


def amplify_score_extreme(score: float) -> float:
    """
    將原始相容性分數(0-1)轉換為最終評分(60-95)
    
    這個函數負責:
    1. 將內部計算的原始分數轉換為更有意義的最終分數
    2. 確保分數分布更自然且有區別性
    3. 突出極佳和極差的匹配
    4. 避免分數過度集中在中間區域
    
    轉換策略:
    - 極佳匹配(0.85-1.0):轉換為 90-95 分
    - 優良匹配(0.70-0.85):轉換為 85-90 分
    - 良好匹配(0.55-0.70):轉換為 75-85 分
    - 一般匹配(0.40-0.55):轉換為 70-75 分
    - 勉強匹配(0.25-0.40):轉換為 65-70 分
    - 不推薦匹配(0-0.25):轉換為 60-65 分
    
    Parameters:
    -----------
    score: 原始相容性分數(0.0-1.0)
    
    Returns:
    --------
    float: 轉換後的最終分數(60.0-95.0)
    """
    # 使用分段函數進行更自然的轉換
    if score >= 0.85:
        # 極佳匹配:90-95分
        position = (score - 0.85) / 0.15
        return 90.0 + (position * 5.0)
    elif score >= 0.70:
        # 優良匹配:85-90分
        position = (score - 0.70) / 0.15
        return 85.0 + (position * 5.0)
    elif score >= 0.55:
        # 良好匹配:75-85分
        position = (score - 0.55) / 0.15
        return 75.0 + (position * 10.0)
    elif score >= 0.40:
        # 一般匹配:70-75分
        position = (score - 0.40) / 0.15
        return 70.0 + (position * 5.0)
    elif score >= 0.25:
        # 勉強匹配:65-70分
        position = (score - 0.25) / 0.15
        return 65.0 + (position * 5.0)
    else:
        # 不推薦匹配:60-65分
        position = score / 0.25
        return 60.0 + (position * 5.0)