File size: 5,394 Bytes
ecd5ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gradio as gr

def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component):
    """创建品种推荐标签页

    Args:
        UserPreferences: 用户偏好类
        get_breed_recommendations: 获取品种推荐的函数
        format_recommendation_html: 格式化推荐结果的函数
        history_component: 历史记录组件
    """
    with gr.TabItem("Breed Recommendation"):
        gr.HTML("<p style='text-align: center;'>Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!</p>")

        with gr.Row():
            with gr.Column():
                living_space = gr.Radio(
                    choices=["apartment", "house_small", "house_large"],
                    label="What type of living space do you have?",
                    info="Choose your current living situation",
                    value="apartment"
                )

                exercise_time = gr.Slider(
                    minimum=0,
                    maximum=180,
                    value=60,
                    label="Daily exercise time (minutes)",
                    info="Consider walks, play time, and training"
                )

                grooming_commitment = gr.Radio(
                    choices=["low", "medium", "high"],
                    label="Grooming commitment level",
                    info="Low: monthly, Medium: weekly, High: daily",
                    value="medium"
                )

            with gr.Column():
                experience_level = gr.Radio(
                    choices=["beginner", "intermediate", "advanced"],
                    label="Dog ownership experience",
                    info="Be honest - this helps find the right match",
                    value="beginner"
                )

                has_children = gr.Checkbox(
                    label="Have children at home",
                    info="Helps recommend child-friendly breeds"
                )

                noise_tolerance = gr.Radio(
                    choices=["low", "medium", "high"],
                    label="Noise tolerance level",
                    info="Some breeds are more vocal than others",
                    value="medium"
                )

        get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
        recommendation_output = gr.HTML(label="Breed Recommendations")

        def on_find_match_click(*args):
            try:
                user_prefs = UserPreferences(
                    living_space=args[0],
                    exercise_time=args[1],
                    grooming_commitment=args[2],
                    experience_level=args[3],
                    has_children=args[4],
                    noise_tolerance=args[5],
                    space_for_play=True if args[0] != "apartment" else False,
                    other_pets=False,
                    climate="moderate",
                    health_sensitivity="medium",  # 新增: 默認中等敏感度
                    barking_acceptance=args[5]    # 使用 noise_tolerance 作為 barking_acceptance
                )

                recommendations = get_breed_recommendations(user_prefs, top_n=10)
                
                history_results = [{
                    'breed': rec['breed'],
                    'rank': rec['rank'],
                    'overall_score': rec['final_score'],
                    'base_score': rec['base_score'],
                    'bonus_score': rec['bonus_score'],
                    'scores': rec['scores']
                } for rec in recommendations]

                # 保存到歷史記錄,也需要更新保存的偏好設定
                history_component.save_search(
                    user_preferences={
                        'living_space': args[0],
                        'exercise_time': args[1],
                        'grooming_commitment': args[2],
                        'experience_level': args[3],
                        'has_children': args[4],
                        'noise_tolerance': args[5],
                        'health_sensitivity': "medium",
                        'barking_acceptance': args[5]
                    },
                    results=history_results
                )

                return format_recommendation_html(recommendations)
                
            except Exception as e:
                print(f"Error in find match: {str(e)}")
                import traceback
                print(traceback.format_exc())
                return "Error getting recommendations"

        get_recommendations_btn.click(
            fn=on_find_match_click,
            inputs=[
                living_space,
                exercise_time,
                grooming_commitment,
                experience_level,
                has_children,
                noise_tolerance
            ],
            outputs=recommendation_output
        )

    return {
        'living_space': living_space,
        'exercise_time': exercise_time,
        'grooming_commitment': grooming_commitment,
        'experience_level': experience_level,
        'has_children': has_children,
        'noise_tolerance': noise_tolerance,
        'get_recommendations_btn': get_recommendations_btn,
        'recommendation_output': recommendation_output
    }