File size: 36,991 Bytes
6be27f7
 
 
 
 
 
 
 
 
 
2993c13
c82fe58
 
 
f431239
 
 
6be27f7
 
 
 
 
 
1c3b621
 
c82fe58
1c3b621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8adad4b
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
1c3b621
6be27f7
1c3b621
6be27f7
 
 
 
 
 
1c3b621
6be27f7
 
 
1c3b621
6be27f7
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
1c3b621
6be27f7
 
 
1c3b621
6be27f7
 
 
 
 
 
1c3b621
6be27f7
61756ef
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
 
 
 
6d8a6e9
1c3b621
 
 
 
 
 
 
6d8a6e9
1c3b621
 
 
 
6d8a6e9
1c3b621
 
 
 
 
 
 
 
 
6d8a6e9
1c3b621
 
 
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
1c3b621
6be27f7
 
1c3b621
61756ef
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
1c3b621
6be27f7
 
 
1c3b621
6be27f7
 
 
 
 
 
 
 
 
 
 
 
 
1c3b621
6be27f7
 
 
 
1c3b621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c82fe58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f431239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c82fe58
6d8a6e9
f431239
 
 
 
 
 
c82fe58
6d8a6e9
f431239
 
6d8a6e9
f431239
 
 
 
 
 
 
6d8a6e9
f431239
6be27f7
 
f431239
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from data_manager import get_dog_description, UserPreferences, get_breed_recommendations, format_recommendation_html
from history_manager import UserHistoryManager
from search_history import create_history_tab
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback


model_yolo = YOLO('yolov8l.pt')

history_manager = UserHistoryManager()

dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
              "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
              "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
              "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
              "Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
              "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
              "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
              "Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
              "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
              "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
              "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
              "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
              "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
              "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
              "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
              "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
              "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
              "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
              "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
              "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
              "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
              "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
              "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
              "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
              "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
              "Wire-Haired_Fox_Terrier"]

class MultiHeadAttention(nn.Module):

    def __init__(self, in_dim, num_heads=8):
        super().__init__()
        self.num_heads = num_heads
        self.head_dim = max(1, in_dim // num_heads)
        self.scaled_dim = self.head_dim * num_heads
        self.fc_in = nn.Linear(in_dim, self.scaled_dim)
        self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
        self.fc_out = nn.Linear(self.scaled_dim, in_dim)

    def forward(self, x):
        N = x.shape[0]
        x = self.fc_in(x)
        q = self.query(x).view(N, self.num_heads, self.head_dim)
        k = self.key(x).view(N, self.num_heads, self.head_dim)
        v = self.value(x).view(N, self.num_heads, self.head_dim)

        energy = torch.einsum("nqd,nkd->nqk", [q, k])
        attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)

        out = torch.einsum("nqk,nvd->nqd", [attention, v])
        out = out.reshape(N, self.scaled_dim)
        out = self.fc_out(out)
        return out

class BaseModel(nn.Module):
    def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super().__init__()
        self.device = device
        self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
        self.feature_dim = self.backbone.classifier[1].in_features
        self.backbone.classifier = nn.Identity()

        self.num_heads = max(1, min(8, self.feature_dim // 64))
        self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)

        self.classifier = nn.Sequential(
            nn.LayerNorm(self.feature_dim),
            nn.Dropout(0.3),
            nn.Linear(self.feature_dim, num_classes)
        )

        self.to(device)

    def forward(self, x):
        x = x.to(self.device)
        features = self.backbone(x)
        attended_features = self.attention(features)
        logits = self.classifier(attended_features)
        return logits, attended_features


num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)

checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])

# evaluation mode
model.eval()

# Image preprocessing function
def preprocess_image(image):
    # If the image is numpy.ndarray turn into PIL.Image
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)

    # Use torchvision.transforms to process images
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ])

    return transform(image).unsqueeze(0)


def get_akc_breeds_link(breed):
    base_url = "https://www.akc.org/dog-breeds/"
    breed_url = breed.lower().replace('_', '-')
    return f"{base_url}{breed_url}/"


async def predict_single_dog(image):
    image_tensor = preprocess_image(image)
    with torch.no_grad():
        output = model(image_tensor)
        logits = output[0] if isinstance(output, tuple) else output
        probabilities = F.softmax(logits, dim=1)
        topk_probs, topk_indices = torch.topk(probabilities, k=3)
        top1_prob = topk_probs[0][0].item()
        topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]

        # Calculate relative probabilities for display
        raw_probs = [prob.item() for prob in topk_probs[0]]
        sum_probs = sum(raw_probs)
        relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in raw_probs]

    return top1_prob, topk_breeds, relative_probs


async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
    results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
    dogs = []
    boxes = []
    for box in results.boxes:
        if box.cls == 16:  # COCO dataset class for dog is 16
            xyxy = box.xyxy[0].tolist()
            confidence = box.conf.item()
            boxes.append((xyxy, confidence))

    if not boxes:
        dogs.append((image, 1.0, [0, 0, image.width, image.height]))
    else:
        nms_boxes = non_max_suppression(boxes, iou_threshold)

        for box, confidence in nms_boxes:
            x1, y1, x2, y2 = box
            w, h = x2 - x1, y2 - y1
            x1 = max(0, x1 - w * 0.05)
            y1 = max(0, y1 - h * 0.05)
            x2 = min(image.width, x2 + w * 0.05)
            y2 = min(image.height, y2 + h * 0.05)
            cropped_image = image.crop((x1, y1, x2, y2))
            dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))

    return dogs


def non_max_suppression(boxes, iou_threshold):
    keep = []
    boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
    while boxes:
        current = boxes.pop(0)
        keep.append(current)
        boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
    return keep


def calculate_iou(box1, box2):
    x1 = max(box1[0], box2[0])
    y1 = max(box1[1], box2[1])
    x2 = min(box1[2], box2[2])
    y2 = min(box1[3], box2[3])

    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])

    iou = intersection / float(area1 + area2 - intersection)
    return iou


async def process_single_dog(image):
    top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)

    # Case 1: Low confidence - unclear image or breed not in dataset
    if top1_prob < 0.2:
        error_message = '''
            <div class="dog-info-card">
                <div class="breed-info">
                    <p class="warning-message">
                        <span class="icon">⚠️</span>
                        The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.
                    </p>
                </div>
            </div>
        '''
        initial_state = {
            "explanation": error_message,
            "image": None,
            "is_multi_dog": False
        }
        return error_message, None, initial_state

    breed = topk_breeds[0]

    # Case 2: High confidence - single breed result
    if top1_prob >= 0.45:
        description = get_dog_description(breed)
        formatted_description = format_description_html(description, breed)  # 使用 format_description_html
        html_content = f'''
            <div class="dog-info-card">
                <div class="breed-info">
                    {formatted_description}
                </div>
            </div>
        '''
        initial_state = {
            "explanation": html_content,
            "image": image,
            "is_multi_dog": False
        }
        return html_content, image, initial_state

    # Case 3: Medium confidence - show top 3 breeds with relative probabilities
    else:
        breeds_html = ""
        for i, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
            description = get_dog_description(breed)
            formatted_description = format_description_html(description, breed)  # 使用 format_description_html
            breeds_html += f'''
                <div class="dog-info-card">
                    <div class="breed-info">
                        <div class="breed-header">
                            <span class="breed-name">Breed {i+1}: {breed}</span>
                            <span class="confidence-badge">Confidence: {prob}</span>
                        </div>
                        {formatted_description}
                    </div>
                </div>
            '''

        initial_state = {
            "explanation": breeds_html,
            "image": image,
            "is_multi_dog": False
        }
        return breeds_html, image, initial_state


def create_breed_comparison(breed1: str, breed2: str) -> dict:
    breed1_info = get_dog_description(breed1)
    breed2_info = get_dog_description(breed2)

    # 標準化數值轉換
    value_mapping = {
        'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
        'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
        'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
        'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
    }

    comparison_data = {
        breed1: {},
        breed2: {}
    }

    for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
        comparison_data[breed] = {
            'Size': value_mapping['Size'].get(info['Size'], 2),  # 預設 Medium
            'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2),  # 預設 Moderate
            'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
            'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
            'Good_with_Children': info['Good with Children'] == 'Yes',
            'Original_Data': info
        }

    return comparison_data


async def predict(image):
    if image is None:
        return "Please upload an image to start.", None, None

    try:
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)

        dogs = await detect_multiple_dogs(image)
        # 更新顏色組合
        single_dog_color = '#34C759'  # 清爽的綠色作為單狗顏色
        color_list = [
        '#FF5733',  # 珊瑚紅
        '#28A745',  # 深綠色
        '#3357FF',  # 寶藍色
        '#FF33F5',  # 粉紫色
        '#FFB733',  # 橙黃色
        '#33FFF5',  # 青藍色
        '#A233FF',  # 紫色
        '#FF3333',  # 紅色
        '#33FFB7',  # 青綠色
        '#FFE033'   # 金黃色
        ]
        annotated_image = image.copy()
        draw = ImageDraw.Draw(annotated_image)

        try:
            font = ImageFont.truetype("arial.ttf", 24)
        except:
            font = ImageFont.load_default()

        dogs_info = ""

        for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
            color = single_dog_color if len(dogs) == 1 else color_list[i % len(color_list)]

            # 優化圖片上的標記
            draw.rectangle(box, outline=color, width=4)
            label = f"Dog {i+1}"
            label_bbox = draw.textbbox((0, 0), label, font=font)
            label_width = label_bbox[2] - label_bbox[0]
            label_height = label_bbox[3] - label_bbox[1]

            label_x = box[0] + 5
            label_y = box[1] + 5
            draw.rectangle(
                [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
                fill='white',
                outline=color,
                width=2
            )
            draw.text((label_x, label_y), label, fill=color, font=font)

            top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
            combined_confidence = detection_confidence * top1_prob

            # 開始資訊卡片
            dogs_info += f'<div class="dog-info-card" style="border-left: 6px solid {color};">'

            if combined_confidence < 0.2:
                dogs_info += f'''
                    <div class="dog-info-header" style="background-color: {color}10;">
                        <span class="dog-label" style="color: {color};">Dog {i+1}</span>
                    </div>
                    <div class="breed-info">
                        <p class="warning-message">
                            <span class="icon">⚠️</span>
                            The image is unclear or the breed is not in the dataset. Please upload a clearer image.
                        </p>
                    </div>
                '''
            elif top1_prob >= 0.45:
                breed = topk_breeds[0]
                description = get_dog_description(breed)
                dogs_info += f'''
                    <div class="dog-info-header" style="background-color: {color}10;">
                        <span class="dog-label" style="color: {color};">
                            <span class="icon">🐾</span> {breed}
                        </span>
                    </div>
                    <div class="breed-info">
                        <h2 class="section-title">
                            <span class="icon">📋</span> BASIC INFORMATION
                        </h2>
                        <div class="info-section">
                            <div class="info-item">
                                <span class="tooltip tooltip-left">
                                    <span class="icon">📏</span>
                                    <span class="label">Size:</span>
                                    <span class="tooltip-icon">ⓘ</span>
                                    <span class="tooltip-text">
                                        <strong>Size Categories:</strong><br>
                                        • Small: Under 20 pounds<br>
                                        • Medium: 20-60 pounds<br>
                                        • Large: Over 60 pounds<br>
                                        • Giant: Over 100 pounds<br>
                                        • Varies: Depends on variety
                                    </span>
                                </span>
                                <span class="value">{description['Size']}</span>
                            </div>
                            <div class="info-item">
                                <span class="tooltip">
                                    <span class="icon">⏳</span>
                                    <span class="label">Lifespan:</span>
                                    <span class="tooltip-icon">ⓘ</span>
                                    <span class="tooltip-text">
                                        <strong>Average Lifespan:</strong><br>
                                        • Short: 6-8 years<br>
                                        • Average: 10-15 years<br>
                                        • Long: 12-20 years<br>
                                        • Varies by size: Larger breeds typically have shorter lifespans
                                    </span>
                                </span>
                                <span class="value">{description['Lifespan']}</span>
                            </div>
                        </div>

                        <h2 class="section-title">
                            <span class="icon">🐕</span> TEMPERAMENT & PERSONALITY
                        </h2>
                        <div class="temperament-section">
                            <span class="tooltip">
                                <span class="value">{description['Temperament']}</span>
                                <span class="tooltip-icon">ⓘ</span>
                                <span class="tooltip-text">
                                    <strong>Temperament Guide:</strong><br>
                                    • Describes the dog's natural behavior and personality<br>
                                    • Important for matching with owner's lifestyle<br>
                                    • Can be influenced by training and socialization
                                </span>
                            </span>
                        </div>

                        <h2 class="section-title">
                            <span class="icon">💪</span> CARE REQUIREMENTS
                        </h2>
                        <div class="care-section">
                            <div class="info-item">
                                <span class="tooltip tooltip-left">
                                    <span class="icon">🏃</span>
                                    <span class="label">Exercise:</span>
                                    <span class="tooltip-icon">ⓘ</span>
                                    <span class="tooltip-text">
                                        <strong>Exercise Needs:</strong><br>
                                        • Low: Short walks and play sessions<br>
                                        • Moderate: 1-2 hours of daily activity<br>
                                        • High: Extensive exercise (2+ hours/day)<br>
                                        • Very High: Constant activity and mental stimulation needed
                                    </span>
                                </span>
                                <span class="value">{description['Exercise Needs']}</span>
                            </div>
                            <div class="info-item">
                                <span class="tooltip">
                                    <span class="icon">✂️</span>
                                    <span class="label">Grooming:</span>
                                    <span class="tooltip-icon">ⓘ</span>
                                    <span class="tooltip-text">
                                        <strong>Grooming Requirements:</strong><br>
                                        • Low: Basic brushing, occasional baths<br>
                                        • Moderate: Weekly brushing, occasional grooming<br>
                                        • High: Daily brushing, frequent professional grooming needed<br>
                                        • Professional care recommended for all levels
                                    </span>
                                </span>
                                <span class="value">{description['Grooming Needs']}</span>
                            </div>
                            <div class="info-item">
                                <span class="tooltip">
                                    <span class="icon">⭐</span>
                                    <span class="label">Care Level:</span>
                                    <span class="tooltip-icon">ⓘ</span>
                                    <span class="tooltip-text">
                                        <strong>Care Level Explained:</strong><br>
                                        • Low: Basic care and attention needed<br>
                                        • Moderate: Regular care and routine needed<br>
                                        • High: Significant time and attention needed<br>
                                        • Very High: Extensive care, training and attention required
                                    </span>
                                </span>
                                <span class="value">{description['Care Level']}</span>
                            </div>
                        </div>

                        <h2 class="section-title">
                            <span class="icon">👨‍👩‍👧‍👦</span> FAMILY COMPATIBILITY
                        </h2>
                        <div class="family-section">
                            <div class="info-item">
                                <span class="tooltip">
                                    <span class="icon"></span>
                                    <span class="label">Good with Children:</span>
                                    <span class="tooltip-icon">ⓘ</span>
                                    <span class="tooltip-text">
                                        <strong>Child Compatibility:</strong><br>
                                        • Yes: Excellent with kids, patient and gentle<br>
                                        • Moderate: Good with older children<br>
                                        • No: Better suited for adult households
                                    </span>
                                </span>
                                <span class="value">{description['Good with Children']}</span>
                            </div>
                        </div>

                        <h2 class="section-title">
                            <span class="icon">📝</span> DESCRIPTION
                        </h2>
                        <div class="description-section">
                            <p>{description.get('Description', '')}</p>
                        </div>

                        <div class="action-section">
                            <a href="{get_akc_breeds_link(breed)}" target="_blank" class="akc-button">
                                <span class="icon">🌐</span>
                                Learn more about {breed} on AKC website
                            </a>
                        </div>
                    </div>
                '''
            else:
                dogs_info += f'''
                    <div class="dog-info-header" style="background-color: {color}10;">
                        <span class="dog-label" style="color: {color};">Dog {i+1}</span>
                    </div>
                    <div class="breed-info">
                        <div class="model-uncertainty-note">
                            <span class="icon">ℹ️</span>
                            Note: The model is showing some uncertainty in its predictions.
                            Here are the most likely breeds based on the available visual features.
                        </div>
                        <div class="breeds-list">
                '''

                for j, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
                    description = get_dog_description(breed)
                    dogs_info += f'''
                        <div class="breed-option uncertainty-mode">
                            <div class="breed-header">
                                <span class="option-number">Option {j+1}</span>
                                <span class="breed-name">{breed}</span>
                                <span class="confidence-badge" style="background-color: {color}20; color: {color};">
                                    Confidence: {prob}
                                </span>
                            </div>
                            <div class="breed-content">
                                {format_description_html(description, breed)}
                            </div>
                        </div>
                    '''
                dogs_info += '</div></div>'

            dogs_info += '</div>'


        html_output = f"""
            <div class="dog-info-card">
                {dogs_info}
            </div>
        """

        initial_state = {
            "dogs_info": dogs_info,
            "image": annotated_image,
            "is_multi_dog": len(dogs) > 1,
            "html_output": html_output
        }

        return html_output, annotated_image, initial_state

    except Exception as e:
        error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
        print(error_msg)
        return error_msg, None, None


def show_details_html(choice, previous_output, initial_state):
    if not choice:
        return previous_output, gr.update(visible=True), initial_state

    try:
        breed = choice.split("More about ")[-1]
        description = get_dog_description(breed)
        formatted_description = format_description_html(description, breed)

        html_output = f"""
        <div class="dog-info">
            <h2>{breed}</h2>
            {formatted_description}
        </div>
        """

        initial_state["current_description"] = html_output
        initial_state["original_buttons"] = initial_state.get("buttons", [])

        return html_output, gr.update(visible=True), initial_state
    except Exception as e:
        error_msg = f"An error occurred while showing details: {e}"
        print(error_msg)
        return f"<p style='color: red;'>{error_msg}</p>", gr.update(visible=True), initial_state


def format_description_html(description, breed):
    html = "<ul style='list-style-type: none; padding-left: 0;'>"
    if isinstance(description, dict):
        for key, value in description.items():
            if key != "Breed":  # 跳過重複的品種顯示
                if key == "Size":
                    html += f'''
                        <li style='margin-bottom: 10px;'>
                            <span class="tooltip">
                                <strong>{key}:</strong>
                                <span class="tooltip-icon">ⓘ</span>
                                <span class="tooltip-text">
                                    <strong>Size Categories:</strong><br>
                                    • Small: Under 20 pounds<br>
                                    • Medium: 20-60 pounds<br>
                                    • Large: Over 60 pounds
                                </span>
                            </span> {value}
                        </li>
                    '''
                elif key == "Exercise Needs":
                    html += f'''
                        <li style='margin-bottom: 10px;'>
                            <span class="tooltip">
                                <strong>{key}:</strong>
                                <span class="tooltip-icon">ⓘ</span>
                                <span class="tooltip-text">
                                    <strong>Exercise Needs:</strong><br>
                                    • High: 2+ hours of daily exercise<br>
                                    • Moderate: 1-2 hours of daily activity<br>
                                    • Low: Short walks and play sessions
                                </span>
                            </span> {value}
                        </li>
                    '''
                elif key == "Grooming Needs":
                    html += f'''
                        <li style='margin-bottom: 10px;'>
                            <span class="tooltip">
                                <strong>{key}:</strong>
                                <span class="tooltip-icon">ⓘ</span>
                                <span class="tooltip-text">
                                    <strong>Grooming Requirements:</strong><br>
                                    • High: Daily brushing, regular professional care<br>
                                    • Moderate: Weekly brushing, occasional grooming<br>
                                    • Low: Minimal brushing, basic maintenance
                                </span>
                            </span> {value}
                        </li>
                    '''
                elif key == "Care Level":
                    html += f'''
                        <li style='margin-bottom: 10px;'>
                            <span class="tooltip">
                                <strong>{key}:</strong>
                                <span class="tooltip-icon">ⓘ</span>
                                <span class="tooltip-text">
                                    <strong>Care Level Explained:</strong><br>
                                    • High: Needs significant training and attention<br>
                                    • Moderate: Regular care and routine needed<br>
                                    • Low: More independent, basic care sufficient
                                </span>
                            </span> {value}
                        </li>
                    '''
                elif key == "Good with Children":
                    html += f'''
                        <li style='margin-bottom: 10px;'>
                            <span class="tooltip">
                                <strong>{key}:</strong>
                                <span class="tooltip-icon">ⓘ</span>
                                <span class="tooltip-text">
                                    <strong>Child Compatibility:</strong><br>
                                    • Yes: Excellent with kids, patient and gentle<br>
                                    • Moderate: Good with older children<br>
                                    • No: Better suited for adult households
                                </span>
                            </span> {value}
                        </li>
                    '''
                elif key == "Lifespan":
                    html += f'''
                        <li style='margin-bottom: 10px;'>
                            <span class="tooltip">
                                <strong>{key}:</strong>
                                <span class="tooltip-icon">ⓘ</span>
                                <span class="tooltip-text">
                                    <strong>Average Lifespan:</strong><br>
                                    • Short: 6-8 years<br>
                                    • Average: 10-15 years<br>
                                    • Long: 12-20 years
                                </span>
                            </span> {value}
                        </li>
                    '''
                elif key == "Temperament":
                    html += f'''
                        <li style='margin-bottom: 10px;'>
                            <span class="tooltip">
                                <strong>{key}:</strong>
                                <span class="tooltip-icon">ⓘ</span>
                                <span class="tooltip-text">
                                    <strong>Temperament Guide:</strong><br>
                                    • Describes the dog's natural behavior<br>
                                    • Important for matching with owner
                                </span>
                            </span> {value}
                        </li>
                    '''
                else:
                    # 其他欄位保持原樣顯示
                    html += f"<li style='margin-bottom: 10px;'><strong>{key}:</strong> {value}</li>"
    else:
        html += f"<li>{description}</li>"
    html += "</ul>"

    # 添加AKC連結
    html += f'''
        <div class="action-section">
            <a href="{get_akc_breeds_link(breed)}" target="_blank" class="akc-button">
                <span class="icon">🌐</span>
                Learn more about {breed} on AKC website
            </a>
        </div>
    '''
    return html

with gr.Blocks(css=get_css_styles()) as iface:

    gr.HTML("""
    <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
        <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
            🐾 PawMatch AI
        </h1>
        <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
            Your Smart Dog Breed Guide
        </h2>
        <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
        <p style='color: #718096; font-size: 0.9em;'>
            Powered by AI • Breed Recognition • Smart Matching • Companion Guide
        </p>
    </header>
    """)

def main():
    with gr.Blocks(css=get_css_styles()) as iface:
        # Header HTML
        gr.HTML("""
        <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
            <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
                🐾 PawMatch AI
            </h1>
            <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
                Your Smart Dog Breed Guide
            </h2>
            <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
            <p style='color: #718096; font-size: 0.9em;'>
                Powered by AI • Breed Recognition • Smart Matching • Companion Guide
            </p>
        </header>
        """)

        # 先創建歷史組件實例(但不創建標籤頁)
        history_component = create_history_component()

        with gr.Tabs():
            # 1. 品種檢測標籤頁
            example_images = [
                'Border_Collie.jpg',
                'Golden_Retriever.jpeg',
                'Saint_Bernard.jpeg',
                'Samoyed.jpg',
                'French_Bulldog.jpeg'
            ]
            detection_components = create_detection_tab(predict, example_images)

            # 2. 品種比較標籤頁
            comparison_components = create_comparison_tab(
                dog_breeds=dog_breeds,
                get_dog_description=get_dog_description
            )

            # 3. 品種推薦標籤頁
            recommendation_components = create_recommendation_tab(
                UserPreferences=UserPreferences,
                get_breed_recommendations=get_breed_recommendations,
                format_recommendation_html=format_recommendation_html,
                history_component=history_component
            )

            # 4. 最後創建歷史記錄標籤頁
            create_history_tab(history_component)

        # Footer
        gr.HTML('''
            For more details on this project and other work, feel free to visit my GitHub 
            <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">
                Dog Breed Classifier
            </a>
        ''')

    return iface

if __name__ == "__main__":
    iface = main()
    iface.launch(share=True)