File size: 1,811 Bytes
e4e2851
 
 
 
8e90922
e4e2851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14ee6e4
 
8e90922
 
 
 
 
 
 
 
e4e2851
8e90922
 
e4e2851
 
f222f88
 
8e90922
 
 
 
 
f222f88
8e90922
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from functools import wraps
import torch
import os
import logging
import spaces

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class DeviceManager:
    _instance = None
    
    def __new__(cls):
        if cls._instance is None:
            cls._instance = super(DeviceManager, cls).__new__(cls)
            cls._instance._initialized = False
        return cls._instance
    
    def __init__(self):
        if self._initialized:
            return
            
        self._initialized = True
        self._current_device = None
        try:
            if os.environ.get('SPACE_ID'):
                # 使用 spaces 的 GPU wrapper 進行初始化
                @spaces.GPU
                def init_gpu():
                    return torch.device('cuda')
                self._current_device = init_gpu()
                logger.info("ZeroGPU initialized successfully")
            else:
                self._current_device = torch.device('cpu')
        except Exception as e:
            logger.warning(f"Failed to initialize ZeroGPU: {e}")
            self._current_device = torch.device('cpu')
    
    def get_optimal_device(self):
        return self._current_device

def device_handler(func):
    """Decorator for handling device placement with ZeroGPU support"""
    @spaces.GPU
    @wraps(func)
    async def wrapper(*args, **kwargs):
        try:
            return await func(*args, **kwargs)
        except RuntimeError as e:
            if "out of memory" in str(e) or "CUDA" in str(e):
                logger.warning("ZeroGPU unavailable, falling back to CPU")
                device_mgr = DeviceManager()
                device_mgr._current_device = torch.device('cpu')
                return await func(*args, **kwargs)
            raise e
    return wrapper