Spaces:
Running
on
Zero
Running
on
Zero
File size: 42,530 Bytes
3a0a246 8ada85f 7d7b810 8ada85f 06a23fd 8ada85f 6778ccb 8ada85f 6778ccb 8ada85f 6778ccb 8ada85f 6778ccb 8ada85f 6778ccb 8ada85f 06a23fd e15edb3 06a23fd e15edb3 06a23fd 8ada85f 06a23fd e15edb3 06a23fd e15edb3 06a23fd e15edb3 06a23fd e15edb3 06a23fd e15edb3 06a23fd e15edb3 06a23fd e15edb3 06a23fd e15edb3 06a23fd e15edb3 06a23fd 8b714be e15edb3 06a23fd e15edb3 06a23fd e15edb3 8b714be e15edb3 06a23fd 8ada85f 8b714be 67bd3aa 8b714be 67bd3aa 8b714be 67bd3aa 8b714be 67bd3aa 9794e80 67bd3aa 8b714be 9794e80 67bd3aa 8b714be 67bd3aa 8b714be 67bd3aa 8b714be 67bd3aa 8b714be 67bd3aa 8b714be 67bd3aa 8b714be 67bd3aa 8b714be 67bd3aa 8b714be 8ada85f 06a23fd 8ada85f b80fce6 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f ef1f36e 9794e80 98d657d 8b714be e15edb3 05d2627 e15edb3 8ada85f 05d2627 e15edb3 98d657d e15edb3 05d2627 e15edb3 05d2627 8ada85f 06a23fd e15edb3 8ada85f 06a23fd e15edb3 8ada85f 05d2627 06a23fd e15edb3 06a23fd e15edb3 05d2627 e15edb3 05d2627 e15edb3 ef1f36e e80a0a9 05d2627 e80a0a9 05d2627 e80a0a9 05d2627 e80a0a9 e15edb3 e80a0a9 e15edb3 e80a0a9 05d2627 e80a0a9 05d2627 e80a0a9 05d2627 e80a0a9 98d657d e15edb3 98d657d 8ada85f e15edb3 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 06a23fd 8ada85f 9794e80 8ada85f 06a23fd 8ada85f 9794e80 3f5eb26 0736754 3f5eb26 ce865f9 0736754 3f5eb26 70e4a5e 0736754 3f5eb26 0736754 3f5eb26 70e4a5e 3f5eb26 7d7b810 3f5eb26 98d657d 7d7b810 7a392b2 3f5eb26 7d7b810 3f5eb26 0736754 3f5eb26 7d7b810 e15edb3 7d7b810 8ada85f 9c6fa88 8ada85f ce865f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 |
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback
@dataclass
class UserPreferences:
"""使用者偏好設定的資料結構"""
living_space: str # "apartment", "house_small", "house_large"
yard_access: str # "no_yard", "shared_yard", "private_yard"
exercise_time: int # minutes per day
exercise_type: str # "light_walks", "moderate_activity", "active_training"
grooming_commitment: str # "low", "medium", "high"
experience_level: str # "beginner", "intermediate", "advanced"
time_availability: str # "limited", "moderate", "flexible"
has_children: bool
children_age: str # "toddler", "school_age", "teenager"
noise_tolerance: str # "low", "medium", "high"
space_for_play: bool
other_pets: bool
climate: str # "cold", "moderate", "hot"
health_sensitivity: str = "medium"
barking_acceptance: str = None
def __post_init__(self):
"""在初始化後運行,用於設置派生值"""
if self.barking_acceptance is None:
self.barking_acceptance = self.noise_tolerance
@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
"""計算品種額外加分"""
bonus = 0.0
temperament = breed_info.get('Temperament', '').lower()
# 1. 壽命加分(最高0.05)
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
bonus += longevity_bonus
except:
pass
# 2. 性格特徵加分(最高0.15)
positive_traits = {
'friendly': 0.05,
'gentle': 0.05,
'patient': 0.05,
'intelligent': 0.04,
'adaptable': 0.04,
'affectionate': 0.04,
'easy-going': 0.03,
'calm': 0.03
}
negative_traits = {
'aggressive': -0.08,
'stubborn': -0.06,
'dominant': -0.06,
'aloof': -0.04,
'nervous': -0.05,
'protective': -0.04
}
personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
bonus += max(-0.15, min(0.15, personality_score))
# 3. 適應性加分(最高0.1)
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.05
if 'adaptable' in temperament or 'versatile' in temperament:
adaptability_bonus += 0.05
bonus += min(0.1, adaptability_bonus)
# 4. 家庭相容性(最高0.1)
if user_prefs.has_children:
family_traits = {
'good with children': 0.06,
'patient': 0.05,
'gentle': 0.05,
'tolerant': 0.04,
'playful': 0.03
}
unfriendly_traits = {
'aggressive': -0.08,
'nervous': -0.07,
'protective': -0.06,
'territorial': -0.05
}
# 年齡評估這樣能更細緻
age_adjustments = {
'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
}
adj = age_adjustments.get(user_prefs.children_age,
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
family_bonus = sum(value for trait, value in family_traits.items()
if trait in temperament) * adj['bonus_mult']
family_penalty = sum(value for trait, value in unfriendly_traits.items()
if trait in temperament) * adj['penalty_mult']
bonus += min(0.15, max(-0.2, family_bonus + family_penalty))
# 5. 專門技能加分(最高0.1)
skill_bonus = 0.0
special_abilities = {
'working': 0.03,
'herding': 0.03,
'hunting': 0.03,
'tracking': 0.03,
'agility': 0.02
}
for ability, value in special_abilities.items():
if ability in temperament.lower():
skill_bonus += value
bonus += min(0.1, skill_bonus)
return min(0.5, max(-0.25, bonus))
@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
"""計算額外的評估因素"""
factors = {
'versatility': 0.0, # 多功能性
'trainability': 0.0, # 可訓練度
'energy_level': 0.0, # 能量水平
'grooming_needs': 0.0, # 美容需求
'social_needs': 0.0, # 社交需求
'weather_adaptability': 0.0 # 氣候適應性
}
temperament = breed_info.get('Temperament', '').lower()
size = breed_info.get('Size', 'Medium')
# 1. 多功能性評估
versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic']
working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion']
trait_score = sum(0.2 for trait in versatile_traits if trait in temperament)
role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower())
factors['versatility'] = min(1.0, trait_score + role_score)
# 2. 可訓練度評估
trainable_traits = {
'intelligent': 0.3,
'eager to please': 0.3,
'trainable': 0.2,
'quick learner': 0.2
}
factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items()
if trait in temperament))
# 3. 能量水平評估
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
energy_levels = {
'VERY HIGH': 1.0,
'HIGH': 0.8,
'MODERATE': 0.6,
'LOW': 0.4,
'VARIES': 0.6
}
factors['energy_level'] = energy_levels.get(exercise_needs, 0.6)
# 4. 美容需求評估
grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
grooming_levels = {
'HIGH': 1.0,
'MODERATE': 0.6,
'LOW': 0.3
}
coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower()
for term in ['long coat', 'double coat']) else 0
factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty)
# 5. 社交需求評估
social_traits = ['friendly', 'social', 'affectionate', 'people-oriented']
antisocial_traits = ['independent', 'aloof', 'reserved']
social_score = sum(0.25 for trait in social_traits if trait in temperament)
antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament)
factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
# 6. 氣候適應性評估
climate_terms = {
'cold': ['thick coat', 'winter', 'cold climate'],
'hot': ['short coat', 'warm climate', 'heat tolerant'],
'moderate': ['adaptable', 'all climate']
}
climate_matches = sum(1 for term in climate_terms[user_prefs.climate]
if term in breed_info.get('Description', '').lower())
factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4) # 基礎分0.4
return factors
@staticmethod
def calculate_family_safety_score(breed_info: dict, children_age: str) -> float:
temperament = breed_info.get('Temperament', '').lower()
size = breed_info.get('Size', 'Medium')
# 基礎安全分數必須根據孩童年齡有所不同
base_safety_scores = {
'toddler': {
"Small": 0.85, # 幼童與小型犬相對安全
"Medium": 0.60, # 中型犬需要更多注意
"Large": 0.40, # 大型犬風險較高
"Giant": 0.30 # 巨型犬風險最高
},
'school_age': {
"Small": 0.90, # 學齡兒童與小型犬很合適
"Medium": 0.75, # 中型犬可以接受
"Large": 0.55, # 大型犬需要注意
"Giant": 0.45 # 巨型犬仍需謹慎
},
'teenager': {
"Small": 0.95, # 青少年幾乎能應付所有小型犬
"Medium": 0.85, # 中型犬很合適
"Large": 0.70, # 大型犬可以考慮
"Giant": 0.60 # 巨型犬仍需小心
}
}
# 根據孩童年齡選擇對應的基礎分數
safety_score = base_safety_scores[children_age][size]
# 年齡特定的危險特徵評估
age_specific_dangerous_traits = {
'toddler': {
'aggressive': -0.40, # 幼童最危險
'territorial': -0.35,
'protective': -0.30,
'nervous': -0.30,
'dominant': -0.25,
'energetic': -0.20 # 過度活潑對幼童也是風險
},
'school_age': {
'aggressive': -0.30,
'territorial': -0.25,
'protective': -0.20,
'nervous': -0.20,
'dominant': -0.15,
'energetic': -0.10
},
'teenager': {
'aggressive': -0.20,
'territorial': -0.15,
'protective': -0.10,
'nervous': -0.15,
'dominant': -0.10,
'energetic': -0.05
}
}
# 套用年齡特定的特徵評估
for trait, penalty in age_specific_dangerous_traits[children_age].items():
if trait in temperament:
safety_score += penalty
# 正面特徵評估(根據年齡調整獎勵程度)
positive_traits_by_age = {
'toddler': {
'gentle': 0.15,
'patient': 0.15,
'calm': 0.12,
'tolerant': 0.12
},
'school_age': {
'gentle': 0.12,
'patient': 0.12,
'playful': 0.10,
'friendly': 0.10
},
'teenager': {
'friendly': 0.10,
'playful': 0.10,
'adaptable': 0.08,
'trainable': 0.08
}
}
# 套用正面特徵評估
for trait, bonus in positive_traits_by_age[children_age].items():
if trait in temperament:
safety_score += bonus
# 特殊風險評估(對所有年齡都很重要)
description = breed_info.get('Description', '').lower()
if 'history of' in description:
safety_score -= 0.25
if 'requires experienced' in description:
safety_score -= 0.15
# 確保分數在合理範圍內
return max(0.2, min(0.95, safety_score))
# def calculate_family_safety_score(breed_info: dict, children_age: str) -> float:
# """
# 計算品種與家庭/兒童的安全相容性分數,作為calculate_compatibility_score的一部分
# 參數:
# breed_info (dict): 品種資訊
# children_age (str): 兒童年齡組別 ('toddler', 'school_age', 'teenager')
# 返回:
# float: 0.2-0.95之間的安全分數
# """
# temperament = breed_info.get('Temperament', '').lower()
# size = breed_info.get('Size', 'Medium')
# # 基礎安全分數(根據體型)
# base_safety_scores = {
# "Small": 0.80, # 從 0.85 降至 0.80
# "Medium": 0.65, # 從 0.75 降至 0.65
# "Large": 0.50, # 從 0.65 降至 0.50
# "Giant": 0.40 # 從 0.55 降至 0.40
# }
# safety_score = base_safety_scores.get(size, 0.60)
# # 加強年齡相關的調整力度
# age_factors = {
# 'toddler': {
# 'base_modifier': -0.25, # 從 -0.15 降至 -0.25
# 'size_penalty': {
# "Small": -0.10, # 從 -0.05 降至 -0.10
# "Medium": -0.20, # 從 -0.10 降至 -0.20
# "Large": -0.30, # 從 -0.20 降至 -0.30
# "Giant": -0.35 # 從 -0.25 降至 -0.35
# }
# },
# 'school_age': {
# 'base_modifier': -0.15, # 從 -0.08 降至 -0.15
# 'size_penalty': {
# "Small": -0.05,
# "Medium": -0.10,
# "Large": -0.20,
# "Giant": -0.25
# }
# },
# 'teenager': {
# 'base_modifier': -0.08, # 從 -0.05 降至 -0.08
# 'size_penalty': {
# "Small": -0.02,
# "Medium": -0.05,
# "Large": -0.10,
# "Giant": -0.15
# }
# }
# }
# # 加強對危險特徵的評估
# dangerous_traits = {
# 'aggressive': -0.35, # 從 -0.25 加重到 -0.35
# 'territorial': -0.30, # 從 -0.20 加重到 -0.30
# 'protective': -0.25, # 從 -0.15 加重到 -0.25
# 'nervous': -0.25, # 從 -0.15 加重到 -0.25
# 'dominant': -0.20, # 從 -0.15 加重到 -0.20
# 'strong-willed': -0.18, # 從 -0.12 加重到 -0.18
# 'independent': -0.15, # 從 -0.10 加重到 -0.15
# 'energetic': -0.12 # 從 -0.08 加重到 -0.12
# }
# # 特殊風險評估加重
# if 'history of' in breed_info.get('Description', '').lower():
# safety_score -= 0.25 # 從 -0.15 加重到 -0.25
# if 'requires experienced' in breed_info.get('Description', '').lower():
# safety_score -= 0.20 # 從 -0.10 加重到 -0.20
# # 計算特徵分數
# for trait, bonus in positive_traits.items():
# if trait in temperament:
# safety_score += bonus * 0.8 # 降低正面特徵的影響力
# for trait, penalty in dangerous_traits.items():
# if trait in temperament:
# # 對幼童加重懲罰
# if children_age == 'toddler':
# safety_score += penalty * 1.3
# # 對青少年略微減輕懲罰
# elif children_age == 'teenager':
# safety_score += penalty * 0.8
# else:
# safety_score += penalty
# # 特殊風險評估
# description = breed_info.get('Description', '').lower()
# if 'history of' in description:
# safety_score -= 0.15
# if 'requires experienced' in description:
# safety_score -= 0.10
# # 將分數限制在合理範圍內
# return max(0.2, min(0.95, safety_score))
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種與使用者條件的相容性分數的優化版本"""
try:
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
print(f"Breed info keys: {breed_info.keys()}")
if 'Size' not in breed_info:
print("Missing Size information")
raise KeyError("Size information missing")
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
"""空間分數計算"""
# 基礎空間需求矩陣
base_scores = {
"Small": {"apartment": 0.95, "house_small": 1.0, "house_large": 0.90},
"Medium": {"apartment": 0.60, "house_small": 0.90, "house_large": 1.0},
"Large": {"apartment": 0.30, "house_small": 0.75, "house_large": 1.0},
"Giant": {"apartment": 0.15, "house_small": 0.55, "house_large": 1.0}
}
# 取得基礎分數
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
# 運動需求調整
exercise_adjustments = {
"Very High": -0.15 if living_space == "apartment" else 0,
"High": -0.10 if living_space == "apartment" else 0,
"Moderate": 0,
"Low": 0.05 if living_space == "apartment" else 0
}
adjustments = exercise_adjustments.get(exercise_needs.strip(), 0)
# 院子獎勵
if has_yard and size in ["Large", "Giant"]:
adjustments += 0.10
elif has_yard:
adjustments += 0.05
return min(1.0, max(0.1, base_score + adjustments))
def calculate_exercise_score(breed_needs: str, user_time: int) -> float:
"""運動需求計算"""
exercise_needs = {
'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180},
'HIGH': {'min': 90, 'ideal': 120, 'max': 150},
'MODERATE': {'min': 45, 'ideal': 60, 'max': 90},
'LOW': {'min': 20, 'ideal': 30, 'max': 45},
'VARIES': {'min': 30, 'ideal': 60, 'max': 90}
}
breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE'])
# 計算匹配度
if user_time >= breed_need['ideal']:
if user_time > breed_need['max']:
return 0.9 # 稍微降分,因為可能過度運動
return 1.0
elif user_time >= breed_need['min']:
return 0.8 + (user_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.2
else:
return max(0.3, 0.8 * (user_time / breed_need['min']))
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
"""美容需求計算"""
# 基礎分數矩陣
base_scores = {
"High": {"low": 0.3, "medium": 0.7, "high": 1.0},
"Moderate": {"low": 0.5, "medium": 0.9, "high": 1.0},
"Low": {"low": 1.0, "medium": 0.95, "high": 0.8}
}
# 取得基礎分數
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# 體型影響調整
size_adjustments = {
"Large": {"low": -0.2, "medium": -0.1, "high": 0},
"Giant": {"low": -0.3, "medium": -0.15, "high": 0},
}
if breed_size in size_adjustments:
adjustment = size_adjustments[breed_size].get(user_commitment, 0)
base_score = max(0.2, base_score + adjustment)
return base_score
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
# """
# 計算使用者經驗與品種需求的匹配分數
# 參數說明:
# care_level: 品種的照顧難度 ("High", "Moderate", "Low")
# user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced")
# temperament: 品種的性格特徵描述
# 返回:
# float: 0.2-1.0 之間的匹配分數
# """
# # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
# base_scores = {
# "High": {
# "beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰
# "intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間
# "advanced": 1.0 # 資深者能完全勝任
# },
# "Moderate": {
# "beginner": 0.35, # 適中難度對新手來說仍具挑戰
# "intermediate": 0.82, # 中級玩家有很好的勝任能力
# "advanced": 1.0 # 資深者完全勝任
# },
# "Low": {
# "beginner": 0.72, # 低難度品種適合新手
# "intermediate": 0.92, # 中級玩家幾乎完全勝任
# "advanced": 1.0 # 資深者完全勝任
# }
# }
# # 取得基礎分數
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# # 性格特徵評估 - 根據經驗等級調整權重
# temperament_lower = temperament.lower()
# temperament_adjustments = 0.0
# if user_experience == "beginner":
# # 新手不適合的特徵 - 更嚴格的懲罰
# difficult_traits = {
# 'stubborn': -0.15, # 加重固執的懲罰
# 'independent': -0.12, # 加重獨立性的懲罰
# 'dominant': -0.12, # 加重支配性的懲罰
# 'strong-willed': -0.10, # 加重強勢的懲罰
# 'protective': -0.08, # 加重保護性的懲罰
# 'aloof': -0.08, # 加重冷漠的懲罰
# 'energetic': -0.06 # 輕微懲罰高能量
# }
# # 新手友善的特徵 - 提供更多獎勵
# easy_traits = {
# 'gentle': 0.08, # 增加溫和的獎勵
# 'friendly': 0.08, # 增加友善的獎勵
# 'eager to please': 0.08, # 增加順從的獎勵
# 'patient': 0.06, # 獎勵耐心
# 'adaptable': 0.06, # 獎勵適應性
# 'calm': 0.05 # 獎勵冷靜
# }
# # 計算特徵調整
# for trait, penalty in difficult_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += penalty * 1.2 # 加重新手的懲罰
# for trait, bonus in easy_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += bonus
# # 品種特殊調整
# if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
# temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰
# elif user_experience == "intermediate":
# # 中級玩家的調整更加平衡
# moderate_traits = {
# 'intelligent': 0.05, # 獎勵聰明
# 'athletic': 0.04, # 獎勵運動能力
# 'versatile': 0.04, # 獎勵多功能性
# 'stubborn': -0.06, # 輕微懲罰固執
# 'independent': -0.05, # 輕微懲罰獨立性
# 'protective': -0.04 # 輕微懲罰保護性
# }
# for trait, adjustment in moderate_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += adjustment
# else: # advanced
# # 資深玩家能夠應對挑戰性特徵
# advanced_traits = {
# 'stubborn': 0.04, # 反轉為優勢
# 'independent': 0.04, # 反轉為優勢
# 'intelligent': 0.05, # 獎勵聰明
# 'protective': 0.04, # 獎勵保護性
# 'strong-willed': 0.03 # 獎勵強勢
# }
# for trait, bonus in advanced_traits.items():
# if trait in temperament_lower:
# temperament_adjustments += bonus
# # 確保最終分數在合理範圍內
# final_score = max(0.2, min(1.0, score + temperament_adjustments))
# return final_score
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
"""
計算使用者經驗與品種需求的匹配分數
參數說明:
care_level: 品種的照顧難度 ("High", "Moderate", "Low")
user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced")
temperament: 品種的性格特徵描述
返回:
float: 0.2-1.0 之間的匹配分數
"""
# 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
base_scores = {
"High": {
"beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰
"intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間
"advanced": 1.0 # 資深者能完全勝任
},
"Moderate": {
"beginner": 0.35, # 適中難度對新手來說仍具挑戰
"intermediate": 0.82, # 中級玩家有很好的勝任能力
"advanced": 1.0 # 資深者完全勝任
},
"Low": {
"beginner": 0.72, # 低難度品種適合新手
"intermediate": 0.92, # 中級玩家幾乎完全勝任
"advanced": 1.0 # 資深者完全勝任
}
}
# 取得基礎分數
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# 性格特徵評估 - 根據經驗等級調整權重
temperament_lower = temperament.lower()
temperament_adjustments = 0.0
if user_experience == "beginner":
# 新手不適合的特徵 - 更嚴格的懲罰
difficult_traits = {
'stubborn': -0.15, # 加重固執的懲罰
'independent': -0.12, # 加重獨立性的懲罰
'dominant': -0.12, # 加重支配性的懲罰
'strong-willed': -0.10, # 加重強勢的懲罰
'protective': -0.08, # 加重保護性的懲罰
'aloof': -0.08, # 加重冷漠的懲罰
'energetic': -0.06 # 輕微懲罰高能量
}
# 新手友善的特徵 - 提供更多獎勵
easy_traits = {
'gentle': 0.08, # 增加溫和的獎勵
'friendly': 0.08, # 增加友善的獎勵
'eager to please': 0.08, # 增加順從的獎勵
'patient': 0.06, # 獎勵耐心
'adaptable': 0.06, # 獎勵適應性
'calm': 0.05 # 獎勵冷靜
}
# 計算特徵調整
for trait, penalty in difficult_traits.items():
if trait in temperament_lower:
temperament_adjustments += penalty * 1.2 # 加重新手的懲罰
for trait, bonus in easy_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 品種特殊調整
if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰
elif user_experience == "intermediate":
base_scores = {
"High": {"intermediate": 0.65},
"Moderate": {"intermediate": 0.75},
"Low": {"intermediate": 0.85}
}
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# 中級玩家特徵評估 - 參考 beginner 的邏輯結構
challenging_traits = {
'stubborn': -0.10, # 仍然需要扣分,但比 beginner 輕
'independent': -0.08,
'dominant': -0.08,
'protective': -0.06,
'aggressive': -0.12, # 仍然嚴重扣分
'nervous': -0.08
}
positive_traits = {
'intelligent': 0.06,
'trainable': 0.06,
'adaptable': 0.05,
'calm': 0.04,
'friendly': 0.04
}
# 計算特徵調整
for trait, penalty in challenging_traits.items():
if trait in temperament_lower:
temperament_adjustments += penalty
for trait, bonus in positive_traits.items():
if trait in temperament_lower:
if temperament_adjustments + bonus <= 0.12: # 限制正面特徵累積
temperament_adjustments += bonus
else: # advanced
base_scores = {
"High": {"advanced": 0.75}, # 降低基礎分數
"Moderate": {"advanced": 0.82},
"Low": {"advanced": 0.88}
}
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
# 即使是進階玩家也需要考慮的風險特徵
risk_traits = {
'aggressive': -0.15, # 最嚴重的風險特徵
'nervous': -0.12,
'unpredictable': -0.12,
'territorial': -0.10,
'dominant': -0.08,
'strong-willed': -0.06
}
# 進階玩家可以處理的特徵,但仍需謹慎
manageable_traits = {
'intelligent': 0.05,
'trainable': 0.04,
'independent': 0.03,
'protective': 0.02
}
# 先計算風險特徵
for trait, penalty in risk_traits.items():
if trait in temperament_lower:
temperament_adjustments += penalty
# 再加上可控制特徵,但有限制
positive_adjustment = 0
for trait, bonus in manageable_traits.items():
if trait in temperament_lower:
positive_adjustment += bonus
temperament_adjustments += min(0.10, positive_adjustment) # 限制正面特徵的總影響
# 確保最終分數在合理範圍內
final_score = max(0.2, min(1.0, score + temperament_adjustments))
return final_score
def calculate_health_score(breed_name: str) -> float:
"""計算品種健康分數"""
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題(降低0.15分)
severe_conditions = [
'hip dysplasia',
'heart disease',
'progressive retinal atrophy',
'bloat',
'epilepsy',
'degenerative myelopathy',
'von willebrand disease'
]
# 中度健康問題(降低0.1分)
moderate_conditions = [
'allergies',
'eye problems',
'joint problems',
'hypothyroidism',
'ear infections',
'skin issues'
]
# 輕微健康問題(降低0.05分)
minor_conditions = [
'dental issues',
'weight gain tendency',
'minor allergies',
'seasonal allergies'
]
# 計算基礎健康分數
health_score = 1.0
# 根據問題嚴重程度扣分
severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
minor_count = sum(1 for condition in minor_conditions if condition in health_notes)
health_score -= (severe_count * 0.15)
health_score -= (moderate_count * 0.1)
health_score -= (minor_count * 0.05)
# 壽命影響
try:
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
years = float(lifespan.split('-')[0])
if years < 8:
health_score *= 0.9
elif years > 13:
health_score *= 1.1
except:
pass
# 特殊健康優勢
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
health_score *= 1.1
return max(0.2, min(1.0, health_score))
def calculate_noise_score(breed_name: str, user_noise_tolerance: str) -> float:
"""計算品種噪音分數"""
if breed_name not in breed_noise_info:
return 0.5
noise_info = breed_noise_info[breed_name]
noise_level = noise_info['noise_level'].lower()
noise_notes = noise_info['noise_notes'].lower()
# 基礎噪音分數矩陣
base_scores = {
'low': {'low': 1.0, 'medium': 0.9, 'high': 0.8},
'medium': {'low': 0.7, 'medium': 1.0, 'high': 0.9},
'high': {'low': 0.4, 'medium': 0.7, 'high': 1.0},
'varies': {'low': 0.6, 'medium': 0.8, 'high': 0.9}
}
# 獲取基礎分數
base_score = base_scores.get(noise_level, {'low': 0.7, 'medium': 0.8, 'high': 0.6})[user_noise_tolerance]
# 吠叫原因評估
barking_reasons_penalty = 0
problematic_triggers = [
('separation anxiety', -0.15),
('excessive barking', -0.12),
('territorial', -0.08),
('alert barking', -0.05),
('attention seeking', -0.05)
]
for trigger, penalty in problematic_triggers:
if trigger in noise_notes:
barking_reasons_penalty += penalty
# 可訓練性補償
trainability_bonus = 0
if 'responds well to training' in noise_notes:
trainability_bonus = 0.1
elif 'can be trained' in noise_notes:
trainability_bonus = 0.05
# 特殊情況
special_adjustments = 0
if 'rarely barks' in noise_notes:
special_adjustments += 0.1
if 'howls' in noise_notes and user_noise_tolerance == 'low':
special_adjustments -= 0.1
final_score = base_score + barking_reasons_penalty + trainability_bonus + special_adjustments
return max(0.2, min(1.0, final_score))
# # 計算所有基礎分數
# scores = {
# 'space': calculate_space_score(
# breed_info['Size'],
# user_prefs.living_space,
# user_prefs.space_for_play,
# breed_info.get('Exercise Needs', 'Moderate')
# ),
# 'exercise': calculate_exercise_score(
# breed_info.get('Exercise Needs', 'Moderate'),
# user_prefs.exercise_time
# ),
# 'grooming': calculate_grooming_score(
# breed_info.get('Grooming Needs', 'Moderate'),
# user_prefs.grooming_commitment.lower(),
# breed_info['Size']
# ),
# 'experience': calculate_experience_score(
# breed_info.get('Care Level', 'Moderate'),
# user_prefs.experience_level,
# breed_info.get('Temperament', '')
# ),
# 'health': calculate_health_score(breed_info.get('Breed', '')),
# 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
# }
# # 優化權重配置
# weights = {
# 'space': 0.28,
# 'exercise': 0.18,
# 'grooming': 0.12,
# 'experience': 0.22,
# 'health': 0.12,
# 'noise': 0.08
# }
# # 計算加權總分
# weighted_score = sum(score * weights[category] for category, score in scores.items())
# def amplify_score(score):
# """
# 優化分數放大函數,確保分數範圍合理且結果一致
# """
# # 基礎調整
# adjusted = (score - 0.35) * 1.8
# # 使用 3.2 次方使曲線更平滑
# amplified = pow(adjusted, 3.2) / 5.8 + score
# # 特別處理高分區間,確保不超過95%
# if amplified > 0.90:
# # 壓縮高分區間,確保最高到95%
# amplified = 0.90 + (amplified - 0.90) * 0.5
# # 確保最終分數在合理範圍內(0.55-0.95)
# final_score = max(0.55, min(0.95, amplified))
# # 四捨五入到小數點後第三位
# return round(final_score, 3)
# final_score = amplify_score(weighted_score)
# # 四捨五入所有分數
# scores = {k: round(v, 4) for k, v in scores.items()}
# scores['overall'] = round(final_score, 4)
# return scores
# 計算所有基礎分數
scores = {
'space': calculate_space_score(
breed_info['Size'],
user_prefs.living_space,
user_prefs.space_for_play,
breed_info.get('Exercise Needs', 'Moderate')
),
'exercise': calculate_exercise_score(
breed_info.get('Exercise Needs', 'Moderate'),
user_prefs.exercise_time
),
'grooming': calculate_grooming_score(
breed_info.get('Grooming Needs', 'Moderate'),
user_prefs.grooming_commitment.lower(),
breed_info['Size']
),
'experience': calculate_experience_score(
breed_info.get('Care Level', 'Moderate'),
user_prefs.experience_level,
breed_info.get('Temperament', '')
),
'health': calculate_health_score(breed_info.get('Breed', '')),
'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
}
# 2. 計算品種加分
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
# 3. 如果有孩童,計算安全分數,但不直接修改基礎分數
if user_prefs.has_children:
family_safety = calculate_family_safety_score(breed_info, user_prefs.children_age)
# 創建安全性調整係數
safety_adjustments = {
'toddler': 0.6, # 對幼童最嚴格
'school_age': 0.75, # 學齡兒童較寬鬆
'teenager': 0.85 # 青少年最寬鬆
}
# 調整權重而不是直接修改分數
safety_weight = safety_adjustments[user_prefs.children_age]
# 修改最終加權計算方式
weights = {
'space': 0.22,
'exercise': 0.15,
'grooming': 0.10,
'experience': 0.18,
'health': 0.10,
'noise': 0.05
}
# 加入安全性權重
final_score = (
sum(score * weights[category] for category, score in scores.items()) * safety_weight +
family_safety * (1 - safety_weight)
)
# 品種加分也要考慮安全性
breed_bonus *= family_safety
else:
# 原有的權重
weights = {
'space': 0.28,
'exercise': 0.18,
'grooming': 0.12,
'experience': 0.22,
'health': 0.12,
'noise': 0.08
}
final_score = sum(score * weights[category] for category, score in scores.items())
# 4. 應用品種加分
final_score *= (1 + breed_bonus * 0.2)
# 5. 最終分數調整
def amplify_score(score):
adjusted = (score - 0.25) * 1.8
amplified = pow(adjusted, 2.2) / 3.5 + score
if amplified > 0.85:
amplified = 0.85 + (amplified - 0.85) * 0.6
return max(0.45, min(0.95, amplified))
final_score = amplify_score(final_score)
# 6. 回傳結果
scores = {k: round(v, 4) for k, v in scores.items()}
scores['overall'] = round(final_score, 4)
return scores
# except Exception as e:
# print(f"Error details: {str(e)}")
# print(f"breed_info: {breed_info}")
# # print(f"Error in calculate_compatibility_score: {str(e)}")
# return {k: 0.5 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
except Exception as e:
print(f"Error in calculate_compatibility_score: {str(e)}")
return {k: 0.7 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|