Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,451 Bytes
26299c4 303f94e 26299c4 303f94e edb9086 303f94e edb9086 26299c4 303f94e edb9086 26299c4 edb9086 26299c4 edb9086 26299c4 303f94e 26299c4 303f94e 26299c4 edb9086 303f94e edb9086 303f94e 26299c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
import torch
import re
import numpy as np
from typing import List, Dict, Tuple, Optional
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import dog_data
from scoring_calculation_system import UserPreferences
from sentence_transformers import SentenceTransformer, util
class SmartBreedMatcher:
def __init__(self, dog_data: List[Tuple]):
self.dog_data = dog_data
self.model = SentenceTransformer('all-mpnet-base-v2')
self._embedding_cache = {}
def _get_cached_embedding(self, text: str) -> torch.Tensor:
if text not in self._embedding_cache:
self._embedding_cache[text] = self.model.encode(text)
return self._embedding_cache[text]
def _categorize_breeds(self) -> Dict:
"""自動將狗品種分類"""
categories = {
'working_dogs': [],
'herding_dogs': [],
'hunting_dogs': [],
'companion_dogs': [],
'guard_dogs': []
}
for breed_info in self.dog_data:
description = breed_info[9].lower()
temperament = breed_info[4].lower()
# 根據描述和性格特徵自動分類
if any(word in description for word in ['herding', 'shepherd', 'cattle', 'flock']):
categories['herding_dogs'].append(breed_info[1])
elif any(word in description for word in ['hunting', 'hunt', 'retriever', 'pointer']):
categories['hunting_dogs'].append(breed_info[1])
elif any(word in description for word in ['companion', 'toy', 'family', 'lap']):
categories['companion_dogs'].append(breed_info[1])
elif any(word in description for word in ['guard', 'protection', 'watchdog']):
categories['guard_dogs'].append(breed_info[1])
elif any(word in description for word in ['working', 'draft', 'cart']):
categories['working_dogs'].append(breed_info[1])
return categories
def find_similar_breeds(self, breed_name: str, top_n: int = 5) -> List[Tuple[str, float]]:
"""找出與指定品種最相似的其他品種"""
target_breed = next((breed for breed in self.dog_data if breed[1] == breed_name), None)
if not target_breed:
return []
# 獲取目標品種的特徵
target_features = {
'breed_name': target_breed[1], # 添加品種名稱
'size': target_breed[2],
'temperament': target_breed[4],
'exercise': target_breed[7],
'description': target_breed[9]
}
similarities = []
for breed in self.dog_data:
if breed[1] != breed_name:
breed_features = {
'breed_name': breed[1], # 添加品種名稱
'size': breed[2],
'temperament': breed[4],
'exercise': breed[7],
'description': breed[9]
}
similarity_score = self._calculate_breed_similarity(target_features, breed_features)
similarities.append((breed[1], similarity_score))
return sorted(similarities, key=lambda x: x[1], reverse=True)[:top_n]
# def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict) -> float:
# """計算兩個品種之間的相似度,包含健康和噪音因素"""
# # 計算描述文本的相似度
# desc1_embedding = self._get_cached_embedding(breed1_features['description'])
# desc2_embedding = self._get_cached_embedding(breed2_features['description'])
# description_similarity = float(util.pytorch_cos_sim(desc1_embedding, desc2_embedding))
# # 基本特徵相似度
# size_similarity = 1.0 if breed1_features['size'] == breed2_features['size'] else 0.5
# exercise_similarity = 1.0 if breed1_features['exercise'] == breed2_features['exercise'] else 0.5
# # 性格相似度
# temp1_embedding = self._get_cached_embedding(breed1_features['temperament'])
# temp2_embedding = self._get_cached_embedding(breed2_features['temperament'])
# temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))
# # 健康分數相似度
# health_score1 = self._calculate_health_score(breed1_features['breed_name'])
# health_score2 = self._calculate_health_score(breed2_features['breed_name'])
# health_similarity = 1.0 - abs(health_score1 - health_score2)
# # 噪音水平相似度
# noise_similarity = self._calculate_noise_similarity(
# breed1_features['breed_name'],
# breed2_features['breed_name']
# )
# # 加權計算
# weights = {
# 'description': 0.25,
# 'temperament': 0.20,
# 'exercise': 0.2,
# 'size': 0.05,
# 'health': 0.15,
# 'noise': 0.15
# }
# final_similarity = (
# description_similarity * weights['description'] +
# temperament_similarity * weights['temperament'] +
# exercise_similarity * weights['exercise'] +
# size_similarity * weights['size'] +
# health_similarity * weights['health'] +
# noise_similarity * weights['noise']
# )
# return final_similarity
def _calculate_breed_similarity(self, breed1_features: Dict, breed2_features: Dict) -> float:
"""計算兩個品種之間的相似度,包含健康和噪音因素"""
# 計算描述文本的相似度
desc1_embedding = self._get_cached_embedding(breed1_features['description'])
desc2_embedding = self._get_cached_embedding(breed2_features['description'])
description_similarity = float(util.pytorch_cos_sim(desc1_embedding, desc2_embedding))
# 使用改進後的尺寸相似度計算
size_similarity = self._calculate_size_similarity(
breed1_features['size'],
breed2_features['size'],
self._get_preferred_size_range(breed1_features['description'])
)
# 其他相似度計算
exercise_similarity = self._calculate_exercise_similarity(breed1_features['exercise'], breed2_features['exercise'])
temp1_embedding = self._get_cached_embedding(breed1_features['temperament'])
temp2_embedding = self._get_cached_embedding(breed2_features['temperament'])
temperament_similarity = float(util.pytorch_cos_sim(temp1_embedding, temp2_embedding))
health_score1 = self._calculate_health_score(breed1_features['breed_name'])
health_score2 = self._calculate_health_score(breed2_features['breed_name'])
health_similarity = 1.0 - abs(health_score1 - health_score2)
noise_similarity = self._calculate_noise_similarity(
breed1_features['breed_name'],
breed2_features['breed_name']
)
# 調整權重,增加尺寸的重要性
weights = {
'description': 0.20, # 降低描述權重
'temperament': 0.20,
'exercise': 0.20,
'size': 0.20, # 顯著提高尺寸權重
'health': 0.10, # 略微降低
'noise': 0.10 # 略微降低
}
final_similarity = (
description_similarity * weights['description'] +
temperament_similarity * weights['temperament'] +
exercise_similarity * weights['exercise'] +
size_similarity * weights['size'] +
health_similarity * weights['health'] +
noise_similarity * weights['noise']
)
return final_similarity
def _calculate_final_scores(self, breed_name: str, base_scores: Dict,
smart_score: float, is_preferred: bool,
similarity_score: float = 0.0) -> Dict:
"""
計算最終分數,包含基礎分數和獎勵分數
Args:
breed_name: 品種名稱
base_scores: 基礎評分 (空間、運動等)
smart_score: 智能匹配分數
is_preferred: 是否為用戶指定品種
similarity_score: 與指定品種的相似度 (0-1)
"""
# 基礎權重
weights = {
'base': 0.6, # 基礎分數權重
'smart': 0.25, # 智能匹配權重
'bonus': 0.15 # 獎勵分數權重
}
# 計算基礎分數
base_score = base_scores.get('overall', 0.7)
# 計算獎勵分數
bonus_score = 0.0
if is_preferred:
# 用戶指定品種獲得最高獎勵
bonus_score = 0.95
elif similarity_score > 0:
# 相似品種獲得部分獎勵,但不超過80%的最高獎勵
bonus_score = min(0.8, similarity_score) * 0.95
# 計算最終分數
final_score = (
base_score * weights['base'] +
smart_score * weights['smart'] +
bonus_score * weights['bonus']
)
# 更新各項分數
scores = base_scores.copy()
# 如果是用戶指定品種,稍微提升各項基礎分數,但保持合理範圍
if is_preferred:
for key in scores:
if key != 'overall':
scores[key] = min(1.0, scores[key] * 1.1) # 最多提升10%
# 為相似品種調整分數
elif similarity_score > 0:
boost_factor = 1.0 + (similarity_score * 0.05) # 最多提升5%
for key in scores:
if key != 'overall':
scores[key] = min(0.95, scores[key] * boost_factor) # 確保不超過95%
return {
'final_score': round(final_score, 4),
'base_score': round(base_score, 4),
'bonus_score': round(bonus_score, 4),
'scores': {k: round(v, 4) for k, v in scores.items()}
}
def _get_preferred_size_range(self, description: str) -> tuple:
"""分析描述文本,確定用戶偏好的尺寸範圍"""
description = description.lower()
# 定義關鍵詞匹配
size_indicators = {
'small': ['small', 'tiny', 'little'],
'medium': ['medium', 'medium-sized', 'moderate size'],
'medium-large': ['medium to large', 'slightly larger', 'medium-large'],
'large': ['large', 'big'],
'giant': ['giant', 'huge', 'very large']
}
# 檢測負面提及
negative_indicators = {
'small': ['not too small', 'not small'],
'large': ['not too large', 'not too big', 'not large'],
'giant': ['not giant', 'not huge']
}
# 默認為中型
preferred_min = 2 # medium
preferred_max = 3 # large
# 分析描述中的尺寸偏好
for size, keywords in size_indicators.items():
for keyword in keywords:
if keyword in description:
if size == 'small':
preferred_min, preferred_max = 1, 2
elif size == 'medium':
preferred_min, preferred_max = 2, 2
elif size == 'medium-large':
preferred_min, preferred_max = 2, 3
elif size == 'large':
preferred_min, preferred_max = 3, 3
elif size == 'giant':
preferred_min, preferred_max = 3, 4
# 檢查負面提及並調整
for size, keywords in negative_indicators.items():
for keyword in keywords:
if keyword in description:
if size == 'small':
preferred_min = max(2, preferred_min)
elif size == 'large':
preferred_max = min(2, preferred_max)
elif size == 'giant':
preferred_max = min(3, preferred_max)
return (preferred_min, preferred_max)
def _calculate_size_similarity(self, size1: str, size2: str, preferred_range: tuple = None) -> float:
"""改進的尺寸相似度計算"""
# 更細緻的尺寸映射
size_map = {
'Tiny': 0.5,
'Small': 1,
'Small-Medium': 1.5,
'Medium': 2,
'Medium-Large': 2.5,
'Large': 3,
'Giant': 4
}
# 獲取數值
value1 = size_map.get(size1, 2)
value2 = size_map.get(size2, 2)
# 基礎相似度計算
base_similarity = 1.0 - (abs(value1 - value2) / 3.5) # 3.5 是最大可能差異
# 如果有偏好範圍,進行額外調整
if preferred_range:
preferred_min, preferred_max = preferred_range
# 檢查是否在偏好範圍內
in_range = (preferred_min <= value2 <= preferred_max)
# 如果不在範圍內,根據距離降低分數
if not in_range:
distance_to_range = min(
abs(value2 - preferred_min),
abs(value2 - preferred_max)
)
penalty = distance_to_range * 0.2 # 每單位差異降低20%
base_similarity *= (1 - penalty)
return max(0.0, min(1.0, base_similarity)) # 確保在 [0, 1] 範圍內
def _calculate_exercise_similarity(self, exercise1: str, exercise2: str) -> float:
exercise_map = {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4}
value1 = exercise_map.get(exercise1, 2) # 預設為 'Moderate'
value2 = exercise_map.get(exercise2, 2) # 預設為 'Moderate'
# 計算相似度
exercise_similarity = 1.0 - abs(value1 - value2) / 3
return max(0.0, exercise_similarity) # 確保相似度在 [0, 1] 範圍內
def _calculate_health_score(self, breed_name: str) -> float:
"""計算品種的健康分數"""
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題
severe_conditions = [
'cancer', 'cardiomyopathy', 'epilepsy', 'dysplasia',
'bloat', 'progressive', 'syndrome'
]
# 中等健康問題
moderate_conditions = [
'allergies', 'infections', 'thyroid', 'luxation',
'skin problems', 'ear'
]
severe_count = sum(1 for condition in severe_conditions if condition in health_notes)
moderate_count = sum(1 for condition in moderate_conditions if condition in health_notes)
health_score = 1.0
health_score -= (severe_count * 0.1)
health_score -= (moderate_count * 0.05)
# 特殊條件調整(根據用戶偏好)
if hasattr(self, 'user_preferences'):
if self.user_preferences.has_children:
if 'requires frequent' in health_notes or 'regular monitoring' in health_notes:
health_score *= 0.9
if self.user_preferences.health_sensitivity == 'high':
health_score *= 0.9
return max(0.3, min(1.0, health_score))
def _calculate_noise_similarity(self, breed1: str, breed2: str) -> float:
"""計算兩個品種的噪音相似度"""
noise_levels = {
'Low': 1,
'Moderate': 2,
'High': 3,
'Unknown': 2 # 默認為中等
}
noise1 = breed_noise_info.get(breed1, {}).get('noise_level', 'Unknown')
noise2 = breed_noise_info.get(breed2, {}).get('noise_level', 'Unknown')
# 獲取數值級別
level1 = noise_levels.get(noise1, 2)
level2 = noise_levels.get(noise2, 2)
# 計算差異並歸一化
difference = abs(level1 - level2)
similarity = 1.0 - (difference / 2) # 最大差異是2,所以除以2來歸一化
return similarity
def _general_matching(self, description: str, top_n: int = 10) -> List[Dict]:
"""基本的品種匹配邏輯,考慮描述、性格、噪音和健康因素"""
matches = []
# 預先計算描述的 embedding 並快取
desc_embedding = self._get_cached_embedding(description)
for breed in self.dog_data:
breed_name = breed[1]
breed_description = breed[9]
temperament = breed[4]
# 使用快取計算相似度
breed_desc_embedding = self._get_cached_embedding(breed_description)
breed_temp_embedding = self._get_cached_embedding(temperament)
desc_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_desc_embedding))
temp_similarity = float(util.pytorch_cos_sim(desc_embedding, breed_temp_embedding))
# 其餘計算保持不變
noise_similarity = self._calculate_noise_similarity(breed_name, breed_name)
health_score = self._calculate_health_score(breed_name)
health_similarity = 1.0 - abs(health_score - 0.8)
weights = {
'description': 0.35,
'temperament': 0.25,
'noise': 0.2,
'health': 0.2
}
final_score = (
desc_similarity * weights['description'] +
temp_similarity * weights['temperament'] +
noise_similarity * weights['noise'] +
health_similarity * weights['health']
)
matches.append({
'breed': breed_name,
'score': final_score,
'is_preferred': False,
'similarity': final_score,
'reason': "Matched based on description, temperament, noise level, and health score"
})
return sorted(matches, key=lambda x: -x['score'])[:top_n]
def _detect_breed_preference(self, description: str) -> Optional[str]:
"""檢測用戶是否提到特定品種"""
description_lower = f" {description.lower()} "
for breed_info in self.dog_data:
breed_name = breed_info[1]
normalized_breed = breed_name.lower().replace('_', ' ')
pattern = rf"\b{re.escape(normalized_breed)}\b"
if re.search(pattern, description_lower):
return breed_name
return None
def match_user_preference(self, description: str, top_n: int = 10) -> List[Dict]:
"""根據用戶描述匹配最適合的品種"""
preferred_breed = self._detect_breed_preference(description)
matches = []
if preferred_breed:
# 首先添加偏好品種
breed_info = next((breed for breed in self.dog_data if breed[1] == preferred_breed), None)
if breed_info:
base_scores = {'overall': 1.0} # 給予最高基礎分數
# 計算偏好品種的最終分數
scores = self._calculate_final_scores(
preferred_breed,
base_scores,
smart_score=1.0,
is_preferred=True,
similarity_score=1.0
)
matches.append({
'breed': preferred_breed,
'score': 1.0, # 確保最高分
'final_score': scores['final_score'],
'base_score': scores['base_score'],
'bonus_score': scores['bonus_score'],
'is_preferred': True,
'priority': 1, # 最高優先級
'health_score': self._calculate_health_score(preferred_breed),
'noise_level': breed_noise_info.get(preferred_breed, {}).get('noise_level', 'Unknown'),
'reason': "Directly matched your preferred breed"
})
# 添加相似品種
similar_breeds = self.find_similar_breeds(preferred_breed, top_n=top_n-1)
for breed_name, similarity in similar_breeds:
if breed_name != preferred_breed:
# 使用 _calculate_final_scores 計算相似品種分數
scores = self._calculate_final_scores(
breed_name,
{'overall': similarity * 0.9}, # 基礎分數略低於偏好品種
smart_score=similarity,
is_preferred=False,
similarity_score=similarity
)
matches.append({
'breed': breed_name,
'score': min(0.95, similarity), # 確保不超過偏好品種
'final_score': scores['final_score'],
'base_score': scores['base_score'],
'bonus_score': scores['bonus_score'],
'is_preferred': False,
'priority': 2,
'health_score': self._calculate_health_score(breed_name),
'noise_level': breed_noise_info.get(breed_name, {}).get('noise_level', 'Unknown'),
'reason': f"Similar to {preferred_breed}"
})
else:
matches = self._general_matching(description, top_n)
for match in matches:
match['priority'] = 3
# 使用複合排序鍵
final_matches = sorted(
matches,
key=lambda x: (
x.get('priority', 3) * -1, # 優先級倒序(1最高)
x.get('is_preferred', False) * 1, # 偏好品種優先
float(x.get('final_score', 0)) * -1, # 分數倒序
x.get('breed', '') # 品種名稱正序
)
)[:top_n]
return final_matches
|