PawMatchAI / app.py
DawnC's picture
Update app.py
6d8a6e9 verified
raw
history blame
63.5 kB
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from data_manager import get_dog_description, UserPreferences, get_breed_recommendations, format_recommendation_html
from breed_health_info import breed_health_info, default_health_note
from urllib.parse import quote
from ultralytics import YOLO
import asyncio
import traceback
model_yolo = YOLO('yolov8l.pt')
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# evaluation mode
model.eval()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def get_akc_breeds_link(breed):
base_url = "https://www.akc.org/dog-breeds/"
breed_url = breed.lower().replace('_', '-')
return f"{base_url}{breed_url}/"
async def predict_single_dog(image):
image_tensor = preprocess_image(image)
with torch.no_grad():
output = model(image_tensor)
logits = output[0] if isinstance(output, tuple) else output
probabilities = F.softmax(logits, dim=1)
topk_probs, topk_indices = torch.topk(probabilities, k=3)
top1_prob = topk_probs[0][0].item()
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
# Calculate relative probabilities for display
raw_probs = [prob.item() for prob in topk_probs[0]]
sum_probs = sum(raw_probs)
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in raw_probs]
return top1_prob, topk_breeds, relative_probs
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
dogs = []
boxes = []
for box in results.boxes:
if box.cls == 16: # COCO dataset class for dog is 16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
boxes.append((xyxy, confidence))
if not boxes:
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
else:
nms_boxes = non_max_suppression(boxes, iou_threshold)
for box, confidence in nms_boxes:
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
x1 = max(0, x1 - w * 0.05)
y1 = max(0, y1 - h * 0.05)
x2 = min(image.width, x2 + w * 0.05)
y2 = min(image.height, y2 + h * 0.05)
cropped_image = image.crop((x1, y1, x2, y2))
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
return dogs
def non_max_suppression(boxes, iou_threshold):
keep = []
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
while boxes:
current = boxes.pop(0)
keep.append(current)
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
return keep
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection / float(area1 + area2 - intersection)
return iou
async def process_single_dog(image):
top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
# Case 1: Low confidence - unclear image or breed not in dataset
if top1_prob < 0.2:
error_message = '''
<div class="dog-info-card">
<div class="breed-info">
<p class="warning-message">
<span class="icon">โš ๏ธ</span>
The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.
</p>
</div>
</div>
'''
initial_state = {
"explanation": error_message,
"image": None,
"is_multi_dog": False
}
return error_message, None, initial_state
breed = topk_breeds[0]
# Case 2: High confidence - single breed result
if top1_prob >= 0.45:
description = get_dog_description(breed)
formatted_description = format_description_html(description, breed) # ไฝฟ็”จ format_description_html
html_content = f'''
<div class="dog-info-card">
<div class="breed-info">
{formatted_description}
</div>
</div>
'''
initial_state = {
"explanation": html_content,
"image": image,
"is_multi_dog": False
}
return html_content, image, initial_state
# Case 3: Medium confidence - show top 3 breeds with relative probabilities
else:
breeds_html = ""
for i, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
description = get_dog_description(breed)
formatted_description = format_description_html(description, breed) # ไฝฟ็”จ format_description_html
breeds_html += f'''
<div class="dog-info-card">
<div class="breed-info">
<div class="breed-header">
<span class="breed-name">Breed {i+1}: {breed}</span>
<span class="confidence-badge">Confidence: {prob}</span>
</div>
{formatted_description}
</div>
</div>
'''
initial_state = {
"explanation": breeds_html,
"image": image,
"is_multi_dog": False
}
return breeds_html, image, initial_state
def create_breed_comparison(breed1: str, breed2: str) -> dict:
"""ๆฏ”่ผƒๅ…ฉๅ€‹็‹—ๅ“็จฎ็š„็‰นๆ€ง"""
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
# ๆจ™ๆบ–ๅŒ–ๆ•ธๅ€ผ่ฝ‰ๆ›
value_mapping = {
'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
}
comparison_data = {
breed1: {},
breed2: {}
}
for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
comparison_data[breed] = {
'Size': value_mapping['Size'].get(info['Size'], 2), # ้ ่จญ Medium
'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # ้ ่จญ Moderate
'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
'Good_with_Children': info['Good with Children'] == 'Yes',
'Original_Data': info
}
return comparison_data
async def predict(image):
if image is None:
return "Please upload an image to start.", None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
dogs = await detect_multiple_dogs(image)
# ๆ›ดๆ–ฐ้ก่‰ฒ็ต„ๅˆ
single_dog_color = '#34C759' # ๆธ…็ˆฝ็š„็ถ ่‰ฒไฝœ็‚บๅ–ฎ็‹—้ก่‰ฒ
color_list = [
'#FF5733', # ็Š็‘š็ด…
'#28A745', # ๆทฑ็ถ ่‰ฒ
'#3357FF', # ๅฏถ่—่‰ฒ
'#FF33F5', # ็ฒ‰็ดซ่‰ฒ
'#FFB733', # ๆฉ™้ปƒ่‰ฒ
'#33FFF5', # ้’่—่‰ฒ
'#A233FF', # ็ดซ่‰ฒ
'#FF3333', # ็ด…่‰ฒ
'#33FFB7', # ้’็ถ ่‰ฒ
'#FFE033' # ้‡‘้ปƒ่‰ฒ
]
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
color = single_dog_color if len(dogs) == 1 else color_list[i % len(color_list)]
# ๅ„ชๅŒ–ๅœ–็‰‡ไธŠ็š„ๆจ™่จ˜
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# ้–‹ๅง‹่ณ‡่จŠๅก็‰‡
dogs_info += f'<div class="dog-info-card" style="border-left: 6px solid {color};">'
if combined_confidence < 0.2:
dogs_info += f'''
<div class="dog-info-header" style="background-color: {color}10;">
<span class="dog-label" style="color: {color};">Dog {i+1}</span>
</div>
<div class="breed-info">
<p class="warning-message">
<span class="icon">โš ๏ธ</span>
The image is unclear or the breed is not in the dataset. Please upload a clearer image.
</p>
</div>
'''
elif top1_prob >= 0.45:
breed = topk_breeds[0]
description = get_dog_description(breed)
dogs_info += f'''
<div class="dog-info-header" style="background-color: {color}10;">
<span class="dog-label" style="color: {color};">
<span class="icon">๐Ÿพ</span> {breed}
</span>
</div>
<div class="breed-info">
<h2 class="section-title">
<span class="icon">๐Ÿ“‹</span> BASIC INFORMATION
</h2>
<div class="info-section">
<div class="info-item">
<span class="tooltip tooltip-left">
<span class="icon">๐Ÿ“</span>
<span class="label">Size:</span>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Size Categories:</strong><br>
โ€ข Small: Under 20 pounds<br>
โ€ข Medium: 20-60 pounds<br>
โ€ข Large: Over 60 pounds<br>
โ€ข Giant: Over 100 pounds<br>
โ€ข Varies: Depends on variety
</span>
</span>
<span class="value">{description['Size']}</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">โณ</span>
<span class="label">Lifespan:</span>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Average Lifespan:</strong><br>
โ€ข Short: 6-8 years<br>
โ€ข Average: 10-15 years<br>
โ€ข Long: 12-20 years<br>
โ€ข Varies by size: Larger breeds typically have shorter lifespans
</span>
</span>
<span class="value">{description['Lifespan']}</span>
</div>
</div>
<h2 class="section-title">
<span class="icon">๐Ÿ•</span> TEMPERAMENT & PERSONALITY
</h2>
<div class="temperament-section">
<span class="tooltip">
<span class="value">{description['Temperament']}</span>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Temperament Guide:</strong><br>
โ€ข Describes the dog's natural behavior and personality<br>
โ€ข Important for matching with owner's lifestyle<br>
โ€ข Can be influenced by training and socialization
</span>
</span>
</div>
<h2 class="section-title">
<span class="icon">๐Ÿ’ช</span> CARE REQUIREMENTS
</h2>
<div class="care-section">
<div class="info-item">
<span class="tooltip tooltip-left">
<span class="icon">๐Ÿƒ</span>
<span class="label">Exercise:</span>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Exercise Needs:</strong><br>
โ€ข Low: Short walks and play sessions<br>
โ€ข Moderate: 1-2 hours of daily activity<br>
โ€ข High: Extensive exercise (2+ hours/day)<br>
โ€ข Very High: Constant activity and mental stimulation needed
</span>
</span>
<span class="value">{description['Exercise Needs']}</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">โœ‚๏ธ</span>
<span class="label">Grooming:</span>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Grooming Requirements:</strong><br>
โ€ข Low: Basic brushing, occasional baths<br>
โ€ข Moderate: Weekly brushing, occasional grooming<br>
โ€ข High: Daily brushing, frequent professional grooming needed<br>
โ€ข Professional care recommended for all levels
</span>
</span>
<span class="value">{description['Grooming Needs']}</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">โญ</span>
<span class="label">Care Level:</span>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Care Level Explained:</strong><br>
โ€ข Low: Basic care and attention needed<br>
โ€ข Moderate: Regular care and routine needed<br>
โ€ข High: Significant time and attention needed<br>
โ€ข Very High: Extensive care, training and attention required
</span>
</span>
<span class="value">{description['Care Level']}</span>
</div>
</div>
<h2 class="section-title">
<span class="icon">๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ</span> FAMILY COMPATIBILITY
</h2>
<div class="family-section">
<div class="info-item">
<span class="tooltip">
<span class="icon"></span>
<span class="label">Good with Children:</span>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Child Compatibility:</strong><br>
โ€ข Yes: Excellent with kids, patient and gentle<br>
โ€ข Moderate: Good with older children<br>
โ€ข No: Better suited for adult households
</span>
</span>
<span class="value">{description['Good with Children']}</span>
</div>
</div>
<h2 class="section-title">
<span class="icon">๐Ÿ“</span> DESCRIPTION
</h2>
<div class="description-section">
<p>{description.get('Description', '')}</p>
</div>
<div class="action-section">
<a href="{get_akc_breeds_link(breed)}" target="_blank" class="akc-button">
<span class="icon">๐ŸŒ</span>
Learn more about {breed} on AKC website
</a>
</div>
</div>
'''
else:
dogs_info += f'''
<div class="dog-info-header" style="background-color: {color}10;">
<span class="dog-label" style="color: {color};">Dog {i+1}</span>
</div>
<div class="breed-info">
<div class="model-uncertainty-note">
<span class="icon">โ„น๏ธ</span>
Note: The model is showing some uncertainty in its predictions.
Here are the most likely breeds based on the available visual features.
</div>
<div class="breeds-list">
'''
for j, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
description = get_dog_description(breed)
dogs_info += f'''
<div class="breed-option uncertainty-mode">
<div class="breed-header">
<span class="option-number">Option {j+1}</span>
<span class="breed-name">{breed}</span>
<span class="confidence-badge" style="background-color: {color}20; color: {color};">
Confidence: {prob}
</span>
</div>
<div class="breed-content">
{format_description_html(description, breed)}
</div>
</div>
'''
dogs_info += '</div></div>'
dogs_info += '</div>'
html_output = f"""
<div class="dog-info-card">
{dogs_info}
</div>
"""
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return error_msg, None, None
def show_details_html(choice, previous_output, initial_state):
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
formatted_description = format_description_html(description, breed)
html_output = f"""
<div class="dog-info">
<h2>{breed}</h2>
{formatted_description}
</div>
"""
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return f"<p style='color: red;'>{error_msg}</p>", gr.update(visible=True), initial_state
def format_description_html(description, breed):
html = "<ul style='list-style-type: none; padding-left: 0;'>"
if isinstance(description, dict):
for key, value in description.items():
if key != "Breed": # ่ทณ้Ž้‡่ค‡็š„ๅ“็จฎ้กฏ็คบ
if key == "Size":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Size Categories:</strong><br>
โ€ข Small: Under 20 pounds<br>
โ€ข Medium: 20-60 pounds<br>
โ€ข Large: Over 60 pounds
</span>
</span> {value}
</li>
'''
elif key == "Exercise Needs":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Exercise Needs:</strong><br>
โ€ข High: 2+ hours of daily exercise<br>
โ€ข Moderate: 1-2 hours of daily activity<br>
โ€ข Low: Short walks and play sessions
</span>
</span> {value}
</li>
'''
elif key == "Grooming Needs":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Grooming Requirements:</strong><br>
โ€ข High: Daily brushing, regular professional care<br>
โ€ข Moderate: Weekly brushing, occasional grooming<br>
โ€ข Low: Minimal brushing, basic maintenance
</span>
</span> {value}
</li>
'''
elif key == "Care Level":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Care Level Explained:</strong><br>
โ€ข High: Needs significant training and attention<br>
โ€ข Moderate: Regular care and routine needed<br>
โ€ข Low: More independent, basic care sufficient
</span>
</span> {value}
</li>
'''
elif key == "Good with Children":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Child Compatibility:</strong><br>
โ€ข Yes: Excellent with kids, patient and gentle<br>
โ€ข Moderate: Good with older children<br>
โ€ข No: Better suited for adult households
</span>
</span> {value}
</li>
'''
elif key == "Lifespan":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Average Lifespan:</strong><br>
โ€ข Short: 6-8 years<br>
โ€ข Average: 10-15 years<br>
โ€ข Long: 12-20 years
</span>
</span> {value}
</li>
'''
elif key == "Temperament":
html += f'''
<li style='margin-bottom: 10px;'>
<span class="tooltip">
<strong>{key}:</strong>
<span class="tooltip-icon">โ“˜</span>
<span class="tooltip-text">
<strong>Temperament Guide:</strong><br>
โ€ข Describes the dog's natural behavior<br>
โ€ข Important for matching with owner
</span>
</span> {value}
</li>
'''
else:
# ๅ…ถไป–ๆฌ„ไฝไฟๆŒๅŽŸๆจฃ้กฏ็คบ
html += f"<li style='margin-bottom: 10px;'><strong>{key}:</strong> {value}</li>"
else:
html += f"<li>{description}</li>"
html += "</ul>"
# ๆทปๅŠ AKC้€ฃ็ต
html += f'''
<div class="action-section">
<a href="{get_akc_breeds_link(breed)}" target="_blank" class="akc-button">
<span class="icon">๐ŸŒ</span>
Learn more about {breed} on AKC website
</a>
</div>
'''
return html
with gr.Blocks(css="""
.dog-info-card {
border: 1px solid #e1e4e8;
margin: 40px 0; /* ๅขžๅŠ ๅก็‰‡้–“่ท */
padding: 0;
border-radius: 12px;
box-shadow: 0 2px 12px rgba(0,0,0,0.08);
overflow: hidden;
transition: all 0.3s ease;
background: white;
}
.dog-info-card:hover {
box-shadow: 0 4px 16px rgba(0,0,0,0.12);
}
.dog-info-header {
padding: 24px 28px; /* ๅขžๅŠ ๅ…ง่ท */
margin: 0;
font-size: 22px;
font-weight: bold;
border-bottom: 1px solid #e1e4e8;
}
.breed-info {
padding: 28px; /* ๅขžๅŠ ๆ•ด้ซ”ๅ…ง่ท */
line-height: 1.6;
}
.section-title {
font-size: 1.3em;
font-weight: 700;
color: #2c3e50;
margin: 32px 0 20px 0;
padding: 12px 0;
border-bottom: 2px solid #e1e4e8;
text-transform: uppercase;
letter-spacing: 0.5px;
display: flex;
align-items: center;
gap: 8px;
position: relative;
}
.icon {
font-size: 1.2em;
display: inline-flex;
align-items: center;
justify-content: center;
}
.info-section, .care-section, .family-section {
display: flex;
flex-wrap: wrap;
gap: 16px;
margin-bottom: 28px; /* ๅขžๅŠ ๅบ•้ƒจ้–“่ท */
padding: 20px; /* ๅขžๅŠ ๅ…ง่ท */
background: #f8f9fa;
border-radius: 12px;
border: 1px solid #e1e4e8; /* ๆทปๅŠ ้‚Šๆก† */
}
.info-item {
background: white; /* ๆ”น็‚บ็™ฝ่‰ฒ่ƒŒๆ™ฏ */
padding: 14px 18px; /* ๅขžๅŠ ๅ…ง่ท */
border-radius: 8px;
display: flex;
align-items: center;
gap: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
border: 1px solid #e1e4e8;
flex: 1 1 auto;
min-width: 200px;
}
.label {
color: #666;
font-weight: 600;
font-size: 1.1rem;
}
.value {
color: #2c3e50;
font-weight: 500;
font-size: 1.1rem;
}
.temperament-section {
background: #f8f9fa;
padding: 20px; /* ๅขžๅŠ ๅ…ง่ท */
border-radius: 12px;
margin-bottom: 28px; /* ๅขžๅŠ ้–“่ท */
color: #444;
border: 1px solid #e1e4e8; /* ๆทปๅŠ ้‚Šๆก† */
}
.description-section {
background: #f8f9fa;
padding: 24px; /* ๅขžๅŠ ๅ…ง่ท */
border-radius: 12px;
margin: 28px 0; /* ๅขžๅŠ ไธŠไธ‹้–“่ท */
line-height: 1.8;
color: #444;
border: 1px solid #e1e4e8; /* ๆทปๅŠ ้‚Šๆก† */
fontsize: 1.1rem;
}
.description-section p {
margin: 0;
padding: 0;
text-align: justify; /* ๆ–‡ๅญ—ๅ…ฉ็ซฏๅฐ้ฝŠ */
word-wrap: break-word; /* ็ขบไฟ้•ทๅ–ฎๅญ—ๆœƒๆ›่กŒ */
white-space: pre-line; /* ไฟ็•™ๆ›่กŒไฝ†ๅˆไฝต็ฉบ็™ฝ */
max-width: 100%; /* ็ขบไฟไธๆœƒ่ถ…ๅ‡บๅฎนๅ™จ */
}
.action-section {
margin-top: 24px;
text-align: center;
}
.akc-button,
.breed-section .akc-link,
.breed-option .akc-link {
display: inline-flex;
align-items: center;
padding: 14px 28px;
background: linear-gradient(145deg, #00509E, #003F7F);
color: white;
border-radius: 12px; /* ๅขžๅŠ ๅœ“่ง’ */
text-decoration: none;
gap: 12px; /* ๅขžๅŠ ๅœ–ๆจ™ๅ’Œๆ–‡ๅญ—้–“่ท */
transition: all 0.3s ease;
font-weight: 600;
font-size: 1.1em;
box-shadow:
0 2px 4px rgba(0,0,0,0.1),
inset 0 1px 1px rgba(255,255,255,0.1);
border: 1px solid rgba(255,255,255,0.1);
}
.akc-button:hover,
.breed-section .akc-link:hover,
.breed-option .akc-link:hover {
background: linear-gradient(145deg, #003F7F, #00509E);
transform: translateY(-2px);
color: white;
box-shadow:
0 6px 12px rgba(0,0,0,0.2),
inset 0 1px 1px rgba(255,255,255,0.2);
border: 1px solid rgba(255,255,255,0.2);
}
.icon {
font-size: 1.3em;
filter: drop-shadow(0 1px 1px rgba(0,0,0,0.2));
}
.warning-message {
display: flex;
align-items: center;
gap: 8px;
color: #ff3b30;
font-weight: 500;
margin: 0;
padding: 16px;
background: #fff5f5;
border-radius: 8px;
}
.model-uncertainty-note {
display: flex;
align-items: center;
gap: 12px;
padding: 16px;
background-color: #f8f9fa;
border-left: 4px solid #6c757d;
margin-bottom: 20px;
color: #495057;
border-radius: 4px;
}
.breeds-list {
display: flex;
flex-direction: column;
gap: 20px;
}
.breed-option {
background: white;
border: 1px solid #e1e4e8;
border-radius: 8px;
overflow: hidden;
}
.breed-header {
display: flex;
align-items: center;
padding: 16px;
background: #f8f9fa;
gap: 12px;
border-bottom: 1px solid #e1e4e8;
}
.option-number {
font-weight: 600;
color: #666;
padding: 4px 8px;
background: #e1e4e8;
border-radius: 4px;
}
.breed-name {
font-size: 1.5em;
font-weight: bold;
color: #2c3e50;
flex-grow: 1;
}
.confidence-badge {
padding: 4px 12px;
border-radius: 20px;
font-size: 0.9em;
font-weight: 500;
}
.breed-content {
padding: 20px;
}
.breed-content li {
margin-bottom: 8px;
display: flex;
align-items: flex-start; /* ๆ”น็‚บ้ ‚้ƒจๅฐ้ฝŠ */
gap: 8px;
flex-wrap: wrap; /* ๅ…่จฑๅ…งๅฎนๆ›่กŒ */
}
.breed-content li strong {
flex: 0 0 auto; /* ไธ่ฎ“ๆจ™้กŒ็ธฎๆ”พ */
min-width: 100px; /* ็ตฆๆจ™้กŒไธ€ๅ€‹ๅ›บๅฎšๆœ€ๅฐๅฏฌๅบฆ */
}
ul {
padding-left: 0;
margin: 0;
list-style-type: none;
}
li {
margin-bottom: 8px;
display: flex;
align-items: center;
gap: 8px;
}
.akc-link {
color: white;
text-decoration: none;
font-weight: 600;
font-size: 1.1em;
transition: all 0.3s ease;
}
.akc-link:hover {
text-decoration: underline;
color: #D3E3F0;
}
.tooltip {
position: relative;
display: inline-flex;
align-items: center;
gap: 4px;
cursor: help;
}
.tooltip .tooltip-icon {
font-size: 14px;
color: #666;
}
.tooltip .tooltip-text {
visibility: hidden;
width: 250px;
background-color: rgba(44, 62, 80, 0.95);
color: white;
text-align: left;
border-radius: 8px;
padding: 8px 10px;
position: absolute;
z-index: 100;
bottom: 150%;
left: 50%;
transform: translateX(-50%);
opacity: 0;
transition: all 0.3s ease;
font-size: 14px;
line-height: 1.3;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
border: 1px solid rgba(255, 255, 255, 0.1)
margin-bottom: 10px;
}
.tooltip.tooltip-left .tooltip-text {
left: 0;
transform: translateX(0);
}
.tooltip.tooltip-right .tooltip-text {
left: auto;
right: 0;
transform: translateX(0);
}
.tooltip-text strong {
color: white !important;
background-color: transparent !important;
display: block; /* ่ฎ“ๆจ™้กŒ็จ็ซ‹ไธ€่กŒ */
margin-bottom: 2px; /* ๅขžๅŠ ๆจ™้กŒไธ‹ๆ–น้–“่ท */
padding-bottom: 2px; /* ๅŠ ๅ…ฅๅฐ้–“่ท */
border-bottom: 1px solid rgba(255,255,255,0.2);
}
.tooltip-text {
font-size: 13px; /* ็จๅพฎ็ธฎๅฐๅญ—้ซ” */
}
/* ่ชฟๆ•ดๅˆ—่กจ็ฌฆ่™Ÿๅ’Œๆ–‡ๅญ—็š„้–“่ท */
.tooltip-text ul {
margin: 0;
padding-left: 15px; /* ๆธ›ๅฐ‘ๅˆ—่กจ็ฌฆ่™Ÿ็š„็ธฎ้€ฒ */
}
.tooltip-text li {
margin-bottom: 1px; /* ๆธ›ๅฐ‘ๅˆ—่กจ้ …็›ฎ้–“็š„้–“่ท */
}
.tooltip-text br {
line-height: 1.2; /* ๆธ›ๅฐ‘่กŒ่ท */
}
.tooltip .tooltip-text::after {
content: "";
position: absolute;
top: 100%;
left: 20%; /* ่ชฟๆ•ด็ฎญ้ ญไฝ็ฝฎ */
margin-left: -5px;
border-width: 5px;
border-style: solid;
border-color: rgba(44, 62, 80, 0.95) transparent transparent transparent;
}
.tooltip-left .tooltip-text::after {
left: 20%;
}
/* ๅณๅด็ฎญ้ ญ */
.tooltip-right .tooltip-text::after {
left: 80%;
}
.tooltip:hover .tooltip-text {
visibility: visible;
opacity: 1;
}
.tooltip .tooltip-text::after {
content: "";
position: absolute;
top: 100%;
left: 50%;
transform: translateX(-50%);
border-width: 8px;
border-style: solid;
border-color: rgba(44, 62, 80, 0.95) transparent transparent transparent;
}
.uncertainty-mode .tooltip .tooltip-text {
position: absolute;
left: 100%;
bottom: auto;
top: 50%;
transform: translateY(-50%);
margin-left: 10px;
z-index: 1000; /* ็ขบไฟๆ็คบๆก†ๅœจๆœ€ไธŠๅฑค */
}
.uncertainty-mode .tooltip .tooltip-text::after {
content: "";
position: absolute;
top: 50%;
right: 100%;
transform: translateY(-50%);
border-width: 5px;
border-style: solid;
border-color: transparent rgba(44, 62, 80, 0.95) transparent transparent;
}
.uncertainty-mode .breed-content {
font-size: 1.1rem; /* ๅขžๅŠ ๅญ—้ซ”ๅคงๅฐ */
}
.description-section,
.description-section p,
.temperament-section,
.temperament-section .value,
.info-item,
.info-item .value,
.breed-content {
font-size: 1.1rem !important; /* ไฝฟ็”จ !important ็ขบไฟ่ฆ†่“‹ๅ…ถไป–ๆจฃๅผ */
}
.recommendation-card {
margin-bottom: 40px;
}
.compatibility-scores {
background: #f8f9fa;
padding: 24px;
border-radius: 12px;
margin: 20px 0;
}
.score-item {
margin: 15px 0;
}
.progress-bar {
height: 12px;
background-color: #e9ecef;
border-radius: 6px;
overflow: hidden;
margin: 8px 0;
}
.progress {
height: 100%;
background: linear-gradient(90deg, #34C759, #30B350);
border-radius: 6px;
transition: width 0.6s ease;
}
.percentage {
float: right;
color: #34C759;
font-weight: 600;
}
.breed-details-section {
margin: 30px 0;
}
.subsection-title {
font-size: 1.2em;
color: #2c3e50;
margin-bottom: 20px;
display: flex;
align-items: center;
gap: 8px;
}
.details-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 20px;
background: #f8f9fa;
padding: 20px;
border-radius: 12px;
border: 1px solid #e1e4e8;
}
.detail-item {
background: white;
padding: 15px;
border-radius: 8px;
border: 1px solid #e1e4e8;
}
.description-text {
line-height: 1.8;
color: #444;
margin: 0;
padding: 24px 30px; /* ่ชฟๆ•ดๅ…ง้ƒจ้–“่ท๏ผŒๅพž 20px ๆ”น็‚บ 24px 30px */
background: #f8f9fa;
border-radius: 12px;
border: 1px solid #e1e4e8;
text-align: justify; /* ๆทปๅŠ ๆ–‡ๅญ—ๅฐ้ฝŠ */
word-wrap: break-word; /* ็ขบไฟ้•ทๆ–‡ๅญ—ๆœƒๆ›่กŒ */
word-spacing: 1px; /* ๅŠ ๅ…ฅๅญ—้–“่ท */
}
/* ๅทฅๅ…ทๆ็คบๆ”น้€ฒ */
.tooltip {
position: relative;
display: inline-flex;
align-items: center;
gap: 4px;
cursor: help;
padding: 5px 0;
}
.tooltip .tooltip-text {
visibility: hidden;
width: 280px;
background-color: rgba(44, 62, 80, 0.95);
color: white;
text-align: left;
border-radius: 8px;
padding: 12px 15px;
position: absolute;
z-index: 1000;
bottom: calc(100% + 15px);
left: 50%;
transform: translateX(-50%);
opacity: 0;
transition: all 0.3s ease;
font-size: 14px;
line-height: 1.4;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.2);
white-space: normal;
}
.tooltip:hover .tooltip-text {
visibility: visible;
opacity: 1;
}
.score-badge {
background-color: #34C759;
color: white;
padding: 6px 12px;
border-radius: 20px;
font-size: 0.9em;
margin-left: 10px;
font-weight: 500;
box-shadow: 0 2px 4px rgba(52, 199, 89, 0.2);
}
.bonus-score .tooltip-text {
width: 250px;
line-height: 1.4;
padding: 10px;
}
.bonus-score .progress {
background: linear-gradient(90deg, #48bb78, #68d391);
}
.health-section {
margin: 25px 0;
padding: 24px;
background-color: #f8f9fb;
border-radius: 12px;
border: 1px solid #e1e4e8;
}
.health-section .subsection-title {
font-size: 1.3em;
font-weight: 600;
margin-bottom: 20px;
display: flex;
align-items: center;
gap: 8px;
color: #2c3e50;
}
.health-info {
background-color: white;
padding: 24px;
border-radius: 8px;
margin: 15px 0;
border: 1px solid #e1e4e8;
}
.health-details {
font-size: 1.1rem;
line-height: 1.6;
}
.health-details h4 {
color: #2c3e50;
font-size: 1.15rem;
font-weight: 600;
margin: 20px 0 15px 0;
}
.health-details h4:first-child {
margin-top: 0;
}
.health-details ul {
list-style-type: none;
padding-left: 0;
margin: 0 0 25px 0;
}
.health-details ul li {
margin-bottom: 12px;
padding-left: 20px;
position: relative;
}
.health-details ul li:before {
content: "โ€ข";
position: absolute;
left: 0;
color: #2c3e50;
}
.health-disclaimer {
margin-top: 20px;
color: #666;
font-size: 1.05rem;
line-height: 1.6;
padding-top: 20px;
border-top: 1px solid #e1e4e8;
}
.health-disclaimer p {
margin: 8px 0;
padding-left: 15px;
position: relative;
}
.health-disclaimer p:before {
content: "ยป";
position: absolute;
left: 0;
color: #666;
}
""") as iface:
gr.HTML("""
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
๐Ÿพ PawMatch AI
</h1>
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
Your Smart Dog Breed Guide
</h2>
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
<p style='color: #718096; font-size: 0.9em;'>
Powered by AI โ€ข Breed Recognition โ€ข Smart Matching โ€ข Companion Guide
</p>
</header>
""")
# ไฝฟ็”จ Tabs ไพ†ๅˆ†้š”ๅ…ฉๅ€‹ๅŠŸ่ƒฝ
with gr.Tabs():
# ็ฌฌไธ€ๅ€‹ Tab๏ผšๅŽŸๆœ‰็š„่พจ่ญ˜ๅŠŸ่ƒฝ
with gr.TabItem("Breed Detection"):
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed and provide detailed information!</p>")
gr.HTML("<p style='text-align: center; color: #666; font-size: 0.9em;'>Note: The model's predictions may not always be 100% accurate, and it is recommended to use the results as a reference.</p>")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="pil")
output_image = gr.Image(label="Annotated Image")
output = gr.HTML(label="Prediction Results")
initial_state = gr.State()
input_image.change(
predict,
inputs=input_image,
outputs=[output, output_image, initial_state]
)
gr.Examples(
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
inputs=input_image
)
# ็ฌฌไบŒๅ€‹ Tab๏ผšๅ“็จฎๆฏ”่ผƒๅŠŸ่ƒฝ
with gr.TabItem("Breed Comparison"):
gr.HTML("<p style='text-align: center;'>Select two dog breeds to compare their characteristics and care requirements.</p>")
with gr.Row():
breed1_dropdown = gr.Dropdown(
choices=dog_breeds,
label="Select First Breed",
value="Golden_Retriever"
)
breed2_dropdown = gr.Dropdown(
choices=dog_breeds,
label="Select Second Breed",
value="Border_Collie"
)
compare_btn = gr.Button("Compare Breeds")
comparison_output = gr.HTML(label="Comparison Results")
def show_comparison(breed1, breed2):
if not breed1 or not breed2:
return "Please select two breeds to compare"
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
html_output = f"""
<div class="dog-info-card">
<div class="comparison-grid" style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
<div class="breed-info">
<h2 class="section-title">
<span class="icon">๐Ÿ•</span> {breed1.replace('_', ' ')}
</h2>
<div class="info-section">
<div class="info-item">
<span class="tooltip">
<span class="icon">๐Ÿ“</span>
<span class="label">Size:</span>
<span class="value">{breed1_info['Size']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">๐Ÿƒ</span>
<span class="label">Exercise Needs:</span>
<span class="value">{breed1_info['Exercise Needs']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">โœ‚๏ธ</span>
<span class="label">Grooming:</span>
<span class="value">{breed1_info['Grooming Needs']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ</span>
<span class="label">Good with Children:</span>
<span class="value">{breed1_info['Good with Children']}</span>
</span>
</div>
</div>
</div>
<div class="breed-info">
<h2 class="section-title">
<span class="icon">๐Ÿ•</span> {breed2.replace('_', ' ')}
</h2>
<div class="info-section">
<div class="info-item">
<span class="tooltip">
<span class="icon">๐Ÿ“</span>
<span class="label">Size:</span>
<span class="value">{breed2_info['Size']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">๐Ÿƒ</span>
<span class="label">Exercise Needs:</span>
<span class="value">{breed2_info['Exercise Needs']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">โœ‚๏ธ</span>
<span class="label">Grooming:</span>
<span class="value">{breed2_info['Grooming Needs']}</span>
</span>
</div>
<div class="info-item">
<span class="tooltip">
<span class="icon">๐Ÿ‘จโ€๐Ÿ‘ฉโ€๐Ÿ‘งโ€๐Ÿ‘ฆ</span>
<span class="label">Good with Children:</span>
<span class="value">{breed2_info['Good with Children']}</span>
</span>
</div>
</div>
</div>
</div>
</div>
"""
return html_output
compare_btn.click(
show_comparison,
inputs=[breed1_dropdown, breed2_dropdown],
outputs=comparison_output
)
# ็ฌฌไธ‰ๅ€‹ Tab๏ผšๅ“็จฎๆŽจ่–ฆๅŠŸ่ƒฝ
with gr.TabItem("Breed Recommendation"):
gr.HTML("<p style='text-align: center;'>Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you!</p>")
with gr.Row():
with gr.Column():
living_space = gr.Radio(
choices=["apartment", "house_small", "house_large"],
label="What type of living space do you have?",
info="Choose your current living situation",
value="apartment"
)
exercise_time = gr.Slider(
minimum=0,
maximum=180,
value=60,
label="Daily exercise time (minutes)",
info="Consider walks, play time, and training"
)
grooming_commitment = gr.Radio(
choices=["low", "medium", "high"],
label="Grooming commitment level",
info="Low: monthly, Medium: weekly, High: daily",
value="medium"
)
with gr.Column():
experience_level = gr.Radio(
choices=["beginner", "intermediate", "advanced"],
label="Dog ownership experience",
info="Be honest - this helps find the right match",
value="beginner"
)
has_children = gr.Checkbox(
label="Have children at home",
info="Helps recommend child-friendly breeds"
)
noise_tolerance = gr.Radio(
choices=["low", "medium", "high"],
label="Noise tolerance level",
info="Some breeds are more vocal than others",
value="medium"
)
# ่จญ็ฝฎๆŒ‰้ˆ•็š„้ปžๆ“Šไบ‹ไปถ
get_recommendations_btn = gr.Button("Find My Perfect Match! ๐Ÿ”", variant="primary")
recommendation_output = gr.HTML(label="Breed Recommendations")
def process_recommendations(living_space, exercise_time, grooming_commitment,
experience_level, has_children, noise_tolerance):
try:
user_prefs = UserPreferences(
living_space=living_space,
exercise_time=exercise_time,
grooming_commitment=grooming_commitment,
experience_level=experience_level,
has_children=has_children,
noise_tolerance=noise_tolerance,
space_for_play=True if living_space != "apartment" else False,
other_pets=False,
climate="moderate"
)
recommendations = get_breed_recommendations(user_prefs)
return format_recommendation_html(recommendations)
except Exception as e:
print(f"Error in process_recommendations: {str(e)}")
return f"An error occurred: {str(e)}"
# ้€™่กŒๆ˜ฏ้—œ้ต - ็ขบไฟๆŒ‰้ˆ•้ปžๆ“Šไบ‹ไปถๆœ‰ๆญฃ็ขบ้€ฃๆŽฅๅˆฐ่™•็†ๅ‡ฝๆ•ธ
get_recommendations_btn.click(
fn=process_recommendations, # ่™•็†ๅ‡ฝๆ•ธ
inputs=[
living_space,
exercise_time,
grooming_commitment,
experience_level,
has_children,
noise_tolerance
],
outputs=recommendation_output # ่ผธๅ‡บ็ตๆžœ็š„ไฝ็ฝฎ
)
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
if __name__ == "__main__":
iface.launch(share=True)