PawMatchAI / app.py
DawnC's picture
Update app.py
5045da7
raw
history blame
24.8 kB
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
import time
import traceback
import spaces
import timm
from torchvision.ops import nms, box_iou
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont, ImageFilter
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences
from recommendation_html_format import format_recommendation_html, get_breed_recommendations
from history_manager import UserHistoryManager
from search_history import create_history_tab, create_history_component
from styles import get_css_styles
from breed_detection import create_detection_tab
from breed_comparison import create_comparison_tab
from breed_recommendation import create_recommendation_tab
from html_templates import (
format_description_html,
format_single_dog_result,
format_multiple_breeds_result,
format_unknown_breed_message,
format_not_dog_message,
format_hint_html,
format_multi_dog_container,
format_breed_details_html,
get_color_scheme,
get_akc_breeds_link
)
from urllib.parse import quote
from ultralytics import YOLO
from functools import wraps
history_manager = UserHistoryManager()
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
"""
Initializes the MultiHeadAttention module.
Args:
in_dim (int): Dimension of the input features.
num_heads (int): Number of attention heads. Defaults to 8.
"""
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads) # Compute dimension per head
self.scaled_dim = self.head_dim * num_heads # Scaled dimension after splitting into heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim) # Linear layer to project input to scaled_dim
self.query = nn.Linear(self.scaled_dim, self.scaled_dim) # Query projection
self.key = nn.Linear(self.scaled_dim, self.scaled_dim) # Key projection
self.value = nn.Linear(self.scaled_dim, self.scaled_dim) # Value projection
self.fc_out = nn.Linear(self.scaled_dim, in_dim) # Linear layer to project output back to in_dim
def forward(self, x):
"""
Forward pass for multi-head attention mechanism.
Args:
x (Tensor): Input tensor of shape (batch_size, input_dim).
Returns:
Tensor: Output tensor after applying attention mechanism.
"""
N = x.shape[0] # Batch size
x = self.fc_in(x) # Project input to scaled_dim
q = self.query(x).view(N, self.num_heads, self.head_dim) # Compute queries
k = self.key(x).view(N, self.num_heads, self.head_dim) # Compute keys
v = self.value(x).view(N, self.num_heads, self.head_dim) # Compute values
# Calculate attention scores
energy = torch.einsum("nqd,nkd->nqk", [q, k]) # Dot product between queries and keys
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2) # Apply softmax with scaling
# Compute weighted sum of values based on attention scores
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim) # Concatenate all heads
out = self.fc_out(out) # Project back to original input dimension
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
# 1. Initialize backbone, num_classes=0 to remove classifier layer
self.backbone = timm.create_model(
'convnextv2_base',
pretrained=True,
num_classes=0
)
# 2. Use test data to determine actual feature dimensions
with torch.no_grad(): # No need to compute gradients
dummy_input = torch.randn(1, 3, 224, 224) # Create example input
features = self.backbone(dummy_input)
if len(features.shape) > 2: # If features are multi-dimensional
features = features.mean([-2, -1]) # Apply global average pooling
self.feature_dim = features.shape[1] # Get correct feature dimension
print(f"Feature Dimension from V2 backbone: {self.feature_dim}")
# 3. Setup multi-head attention layer
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
# 4. Setup classifier
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
def forward(self, x):
"""
The forward propagation process combines V2's FCCA and the multi-head attention mechanism.
Args:
x (Tensor): Input image tensor with shape [batch_size, channels, height, width]
Returns:
Tuple[Tensor, Tensor]: Classification logits and attention features.
"""
x = x.to(self.device)
# 1. Extract base features
features = self.backbone(x)
# 2. Process feature dimensions
if len(features.shape) > 2:
# If feature dimensions are [batch_size, channels, height, width]
# Convert to [batch_size, channels]
features = features.mean([-2, -1]) # Use global average pooling
# 3. Apply attention mechanism
attended_features = self.attention(features)
# 4. Final classification
logits = self.classifier(attended_features)
return logits, attended_features
class ModelManager:
"""
模型管理器:負責模型的初始化、設備管理和資源控制(CPU, GPU)
"""
_instance = None
_initialized = False
_yolo_model = None
_breed_model = None
_device = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
return cls._instance
def __init__(self):
# 避免重複初始化
if not ModelManager._initialized:
# 初始化設備,這會在第一次創建實例時執行
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
ModelManager._initialized = True
@property
def device(self):
"""
提供對設備的訪問
確保在需要時設備已經被初始化
"""
if self._device is None:
self._device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
return self._device
@property
def yolo_model(self):
"""
延遲初始化YOLO
只有在第一次使用時才會創建實例
"""
if self._yolo_model is None:
self._yolo_model = YOLO('yolov8x.pt')
return self._yolo_model
@property
def breed_model(self):
"""
延遲初始化品種分類模型
只有在第一次使用時才會創建實例並移動到正確的設備上
"""
if self._breed_model is None:
self._breed_model = BaseModel(
num_classes=len(dog_breeds),
device=self.device
).to(self.device)
checkpoint = torch.load(
'ConvNextV2Base_best_model_dog.pth',
map_location=self.device # 確保checkpoint加載到正確的設備
)
self._breed_model.load_state_dict(checkpoint['base_model'], strict=False)
self._breed_model.eval()
return self._breed_model
model_manager = ModelManager()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
@spaces.GPU
def predict_single_dog(image):
"""
Predicts the dog breed using only the classifier.
Args:
image: PIL Image or numpy array
Returns:
tuple: (top1_prob, topk_breeds, relative_probs)
"""
image_tensor = preprocess_image(image).to(model_manager.device)
with torch.no_grad():
# Get model outputs (只使用logits,不需要features)
logits = model_manager.breed_model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
probs = F.softmax(logits, dim=1)
# Classifier prediction
top5_prob, top5_idx = torch.topk(probs, k=5)
breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
probabilities = [prob.item() for prob in top5_prob[0]]
# Calculate relative probabilities
sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
# Debug output
print("\nClassifier Predictions:")
for breed, prob in zip(breeds[:5], probabilities[:5]):
print(f"{breed}: {prob:.4f}")
return probabilities[0], breeds[:3], relative_probs
@spaces.GPU
def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.3):
"""
使用YOLO模型檢測圖片中的狗。
只保留被識別為狗(class 16)的物體,並標記它們的狀態。
Args:
image: PIL Image
conf_threshold: YOLO檢測的信心度閾值
iou_threshold: 非極大值抑制的IoU閾值
Returns:
list: 包含檢測到的狗的列表,每個元素是(cropped_image, confidence, box, is_dog)的元組
"""
results = model_manager.yolo_model(image, conf=conf_threshold,
iou=iou_threshold)[0]
dogs = []
boxes = []
# 只處理被識別為狗的物體
for box in results.boxes:
class_id = box.cls.item()
if class_id == 16: # COCO dataset中狗的類別是16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
boxes.append((xyxy, confidence, True)) # 加入is_dog標記
if not boxes:
# 如果沒有檢測到狗,返回整張圖片並標記為非狗
return [(image, 1.0, [0, 0, image.width, image.height], False)]
nms_boxes = non_max_suppression(boxes, iou_threshold)
detected_objects = []
# 處理每個檢測到的狗
for box, confidence, is_dog in nms_boxes:
x1, y1, x2, y2 = box
w, h = x2 - x1, y2 - y1
# 擴大檢測框範圍以包含完整的狗
x1 = max(0, x1 - w * 0.02)
y1 = max(0, y1 - h * 0.02)
x2 = min(image.width, x2 + w * 0.02)
y2 = min(image.height, y2 + h * 0.02)
cropped_image = image.crop((x1, y1, x2, y2))
detected_objects.append((cropped_image, confidence, [x1, y1, x2, y2], is_dog))
return detected_objects
def non_max_suppression(boxes, iou_threshold):
keep = []
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
while boxes:
current = boxes.pop(0)
keep.append(current)
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
return keep
def calculate_iou(box1, box2):
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
iou = intersection / float(area1 + area2 - intersection)
return iou
def create_breed_comparison(breed1: str, breed2: str) -> dict:
breed1_info = get_dog_description(breed1)
breed2_info = get_dog_description(breed2)
# 標準化數值轉換
value_mapping = {
'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
}
comparison_data = {
breed1: {},
breed2: {}
}
for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
comparison_data[breed] = {
'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
'Good_with_Children': info['Good with Children'] == 'Yes',
'Original_Data': info
}
return comparison_data
@spaces.GPU
def predict(image):
"""
主要的預測函數,負責處理狗的檢測和品種辨識。
它整合了YOLO的物體檢測和專門的品種分類模型。
實施雙層檢測,非狗會直接忽略.
Args:
image: PIL Image 或 numpy array
Returns:
tuple: (html_output, annotated_image, initial_state)
"""
if image is None:
return format_hint_html("Please upload an image to start."), None, None
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# 檢測圖片中的狗
dogs = detect_multiple_dogs(image)
color_scheme = get_color_scheme(len(dogs) == 1)
# 準備標註
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
dogs_info = ""
# 處理每個檢測到的物體
for i, (cropped_image, detection_confidence, box, is_dog) in enumerate(dogs):
color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
# 繪製框和標籤
draw.rectangle(box, outline=color, width=4)
label = f"Dog {i+1}" if is_dog else f"Object {i+1}"
label_bbox = draw.textbbox((0, 0), label, font=font)
label_width = label_bbox[2] - label_bbox[0]
label_height = label_bbox[3] - label_bbox[1]
# 繪製標籤背景和文字
label_x = box[0] + 5
label_y = box[1] + 5
draw.rectangle(
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
fill='white',
outline=color,
width=2
)
draw.text((label_x, label_y), label, fill=color, font=font)
try:
# 首先檢查是否為狗
if not is_dog:
dogs_info += format_not_dog_message(color, i+1)
continue
# 如果是狗,進行品種預測
top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
combined_confidence = detection_confidence * top1_prob
# 根據信心度決定輸出格式
if combined_confidence < 0.15:
dogs_info += format_unknown_breed_message(color, i+1)
elif top1_prob >= 0.4:
breed = topk_breeds[0]
description = get_dog_description(breed)
if description is None:
description = {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
dogs_info += format_single_dog_result(breed, description, color)
else:
dogs_info += format_multiple_breeds_result(
topk_breeds,
relative_probs,
color,
i+1,
lambda breed: get_dog_description(breed) or {
"Name": breed,
"Size": "Unknown",
"Exercise Needs": "Unknown",
"Grooming Needs": "Unknown",
"Care Level": "Unknown",
"Good with Children": "Unknown",
"Description": f"Identified as {breed.replace('_', ' ')}"
}
)
except Exception as e:
print(f"Error formatting results for dog {i+1}: {str(e)}")
dogs_info += format_unknown_breed_message(color, i+1)
# 包裝最終的HTML輸出
html_output = format_multi_dog_container(dogs_info)
# 準備初始狀態
initial_state = {
"dogs_info": dogs_info,
"image": annotated_image,
"is_multi_dog": len(dogs) > 1,
"html_output": html_output
}
return html_output, annotated_image, initial_state
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
print(error_msg)
return format_hint_html(error_msg), None, None
def show_details_html(choice, previous_output, initial_state):
"""
Generate detailed HTML view for a selected breed.
Args:
choice: str, Selected breed option
previous_output: str, Previous HTML output
initial_state: dict, Current state information
Returns:
tuple: (html_output, gradio_update, updated_state)
"""
if not choice:
return previous_output, gr.update(visible=True), initial_state
try:
breed = choice.split("More about ")[-1]
description = get_dog_description(breed)
html_output = format_breed_details_html(description, breed)
# Update state
initial_state["current_description"] = html_output
initial_state["original_buttons"] = initial_state.get("buttons", [])
return html_output, gr.update(visible=True), initial_state
except Exception as e:
error_msg = f"An error occurred while showing details: {e}"
print(error_msg)
return format_hint_html(error_msg), gr.update(visible=True), initial_state
def main():
with gr.Blocks(css=get_css_styles()) as iface:
gr.HTML("""
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
🐾 PawMatch AI
</h1>
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
Your Smart Dog Breed Guide
</h2>
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
<p style='color: #718096; font-size: 0.9em;'>
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
</p>
</header>
""")
# 先創建歷史組件實例(但不創建標籤頁)
history_component = create_history_component()
with gr.Tabs():
# 1. 品種檢測標籤頁
example_images = [
'Border_Collie.jpg',
'Golden_Retriever.jpeg',
'Saint_Bernard.jpeg',
'Samoyed.jpeg',
'French_Bulldog.jpeg'
]
detection_components = create_detection_tab(predict, example_images)
# 2. 品種比較標籤頁
comparison_components = create_comparison_tab(
dog_breeds=dog_breeds,
get_dog_description=get_dog_description,
breed_health_info=breed_health_info,
breed_noise_info=breed_noise_info
)
# 3. 品種推薦標籤頁
recommendation_components = create_recommendation_tab(
UserPreferences=UserPreferences,
get_breed_recommendations=get_breed_recommendations,
format_recommendation_html=format_recommendation_html,
history_component=history_component
)
# 4. 最後創建歷史記錄標籤頁
create_history_tab(history_component)
# Footer
gr.HTML('''
<div style="
display: flex;
align-items: center;
justify-content: center;
gap: 20px;
padding: 20px 0;
">
<p style="
font-family: 'Arial', sans-serif;
font-size: 14px;
font-weight: 500;
letter-spacing: 2px;
background: linear-gradient(90deg, #555, #007ACC);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
margin: 0;
text-transform: uppercase;
display: inline-block;
">EXPLORE THE CODE →</p>
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
<img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
</a>
</div>
''')
return iface
if __name__ == "__main__":
iface = main()
iface.launch()