Spaces:
Running
on
Zero
Running
on
Zero
import sqlite3 | |
import gradio as gr | |
from dog_database import get_dog_description, dog_data | |
from breed_health_info import breed_health_info | |
from breed_noise_info import breed_noise_info | |
from scoring_calculation_system import UserPreferences, calculate_compatibility_score | |
from recommendation_html_format import format_recommendation_html, get_breed_recommendations | |
from smart_breed_matcher import SmartBreedMatcher | |
from description_search_ui import create_description_search_tab | |
def create_recommendation_tab(UserPreferences, get_breed_recommendations, format_recommendation_html, history_component): | |
with gr.TabItem("Breed Recommendation"): | |
with gr.Tabs(): | |
with gr.Tab("Find by Criteria"): | |
gr.HTML(""" | |
<div style=' | |
text-align: center; | |
padding: 20px 0; | |
margin: 15px 0; | |
background: linear-gradient(to right, rgba(66, 153, 225, 0.1), rgba(72, 187, 120, 0.1)); | |
border-radius: 10px; | |
'> | |
<p style=' | |
font-size: 1.2em; | |
margin: 0; | |
padding: 0 20px; | |
line-height: 1.5; | |
background: linear-gradient(90deg, #4299e1, #48bb78); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
font-weight: 600; | |
'> | |
Tell us about your lifestyle, and we'll recommend the perfect dog breeds for you! | |
</p> | |
</div> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
living_space = gr.Radio( | |
choices=["apartment", "house_small", "house_large"], | |
label="What type of living space do you have?", | |
info="Choose your current living situation", | |
value="apartment" | |
) | |
exercise_time = gr.Slider( | |
minimum=0, | |
maximum=180, | |
value=60, | |
label="Daily exercise time (minutes)", | |
info="Consider walks, play time, and training" | |
) | |
grooming_commitment = gr.Radio( | |
choices=["low", "medium", "high"], | |
label="Grooming commitment level", | |
info="Low: monthly, Medium: weekly, High: daily", | |
value="medium" | |
) | |
with gr.Column(): | |
experience_level = gr.Radio( | |
choices=["beginner", "intermediate", "advanced"], | |
label="Dog ownership experience", | |
info="Be honest - this helps find the right match", | |
value="beginner" | |
) | |
has_children = gr.Checkbox( | |
label="Have children at home", | |
info="Helps recommend child-friendly breeds" | |
) | |
noise_tolerance = gr.Radio( | |
choices=["low", "medium", "high"], | |
label="Noise tolerance level", | |
info="Some breeds are more vocal than others", | |
value="medium" | |
) | |
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary") | |
recommendation_output = gr.HTML(label="Breed Recommendations") | |
with gr.Tab("Find by Description"): | |
description_input, description_search_btn, description_output, loading_msg = create_description_search_tab() | |
def on_find_match_click(*args): | |
try: | |
user_prefs = UserPreferences( | |
living_space=args[0], | |
exercise_time=args[1], | |
grooming_commitment=args[2], | |
experience_level=args[3], | |
has_children=args[4], | |
noise_tolerance=args[5], | |
space_for_play=True if args[0] != "apartment" else False, | |
other_pets=False, | |
climate="moderate", | |
health_sensitivity="medium", # 新增: 默認中等敏感度 | |
barking_acceptance=args[5] # 使用 noise_tolerance 作為 barking_acceptance | |
) | |
recommendations = get_breed_recommendations(user_prefs, top_n=10) | |
history_results = [{ | |
'breed': rec['breed'], | |
'rank': rec['rank'], | |
'overall_score': rec['final_score'], | |
'base_score': rec['base_score'], | |
'bonus_score': rec['bonus_score'], | |
'scores': rec['scores'] | |
} for rec in recommendations] | |
# 保存到歷史記錄,也需要更新保存的偏好設定 | |
history_component.save_search( | |
user_preferences={ | |
'living_space': args[0], | |
'exercise_time': args[1], | |
'grooming_commitment': args[2], | |
'experience_level': args[3], | |
'has_children': args[4], | |
'noise_tolerance': args[5], | |
'health_sensitivity': "medium", | |
'barking_acceptance': args[5] | |
}, | |
results=history_results | |
) | |
return format_recommendation_html(recommendations) | |
except Exception as e: | |
print(f"Error in find match: {str(e)}") | |
import traceback | |
print(traceback.format_exc()) | |
return "Error getting recommendations" | |
def on_description_search(description: str): | |
try: | |
matcher = SmartBreedMatcher(dog_data) | |
breed_recommendations = matcher.match_user_preference(description, top_n=10) | |
print("Creating user preferences...") | |
user_prefs = UserPreferences( | |
living_space="apartment" if "apartment" in description.lower() else "house_small", | |
exercise_time=60, | |
grooming_commitment="medium", | |
experience_level="intermediate", | |
has_children="children" in description.lower() or "kids" in description.lower(), | |
noise_tolerance="medium", | |
space_for_play=True if "yard" in description.lower() or "garden" in description.lower() else False, | |
other_pets=False, | |
climate="moderate", | |
health_sensitivity="medium", | |
barking_acceptance=None | |
) | |
final_recommendations = [] | |
for smart_rec in breed_recommendations: | |
breed_name = smart_rec['breed'] | |
breed_info = get_dog_description(breed_name) | |
if not isinstance(breed_info, dict): | |
continue | |
# 計算基礎相容性分數 | |
compatibility_scores = calculate_compatibility_score(breed_info, user_prefs) | |
bonus_reasons = [] | |
bonus_score = 0 | |
is_preferred = smart_rec.get('is_preferred', False) | |
similarity = smart_rec.get('similarity', 0) | |
# 用戶直接提到的品種 | |
if is_preferred: | |
bonus_score = 0.15 # 15% bonus | |
bonus_reasons.append("Directly mentioned breed (+15%)") | |
# 高相似度品種 | |
elif similarity > 0.8: | |
bonus_score = 0.10 # 10% bonus | |
bonus_reasons.append("Very similar to preferred breed (+10%)") | |
# 中等相似度品種 | |
elif similarity > 0.6: | |
bonus_score = 0.05 # 5% bonus | |
bonus_reasons.append("Similar to preferred breed (+5%)") | |
# 基於品種特性的額外加分 | |
temperament = breed_info.get('Temperament', '').lower() | |
if any(trait in temperament for trait in ['friendly', 'gentle', 'affectionate']): | |
bonus_score += 0.02 # 2% bonus | |
bonus_reasons.append("Positive temperament traits (+2%)") | |
if breed_info.get('Good with Children') == 'Yes' and user_prefs.has_children: | |
bonus_score += 0.03 # 3% bonus | |
bonus_reasons.append("Excellent with children (+3%)") | |
# 基礎分數和最終分數計算 | |
base_score = compatibility_scores.get('overall', 0.7) | |
final_score = min(0.95, base_score + bonus_score) # 確保不超過95% | |
final_recommendations.append({ | |
'rank': 0, | |
'breed': breed_name, | |
'base_score': round(base_score, 4), | |
'bonus_score': round(bonus_score, 4), | |
'final_score': round(final_score, 4), | |
'scores': compatibility_scores, | |
'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match", | |
'info': breed_info, | |
'noise_info': breed_noise_info.get(breed_name, {}), | |
'health_info': breed_health_info.get(breed_name, {}) | |
}) | |
# 根據最終分數排序 | |
final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed'])) | |
# 更新排名 | |
for i, rec in enumerate(final_recommendations, 1): | |
rec['rank'] = i | |
# 新增:保存到歷史記錄 | |
history_results = [{ | |
'breed': rec['breed'], | |
'rank': rec['rank'], | |
'final_score': rec['final_score'] | |
} for rec in final_recommendations[:10]] # 只保存前10名 | |
history_component.save_search( | |
user_preferences=None, # description搜尋不需要preferences | |
results=history_results, | |
search_type="description", | |
description=description # 用戶輸入的描述文字 | |
) | |
# 驗證排序 | |
print("\nFinal Rankings:") | |
for rec in final_recommendations: | |
print(f"#{rec['rank']} {rec['breed']}") | |
print(f"Base Score: {rec['base_score']:.4f}") | |
print(f"Bonus Score: {rec['bonus_score']:.4f}") | |
print(f"Final Score: {rec['final_score']:.4f}") | |
print(f"Reason: {rec['match_reason']}\n") | |
result = format_recommendation_html(final_recommendations) | |
return [gr.update(value=result), gr.update(visible=False)] | |
except Exception as e: | |
error_msg = f"Error processing your description. Details: {str(e)}" | |
return [gr.update(value=error_msg), gr.update(visible=False)] | |
def show_loading(): | |
return [gr.update(value=""), gr.update(visible=True)] | |
get_recommendations_btn.click( | |
fn=on_find_match_click, | |
inputs=[ | |
living_space, | |
exercise_time, | |
grooming_commitment, | |
experience_level, | |
has_children, | |
noise_tolerance | |
], | |
outputs=recommendation_output | |
) | |
description_search_btn.click( | |
fn=show_loading, # 先顯示加載消息 | |
outputs=[description_output, loading_msg] | |
).then( # 然後執行搜索 | |
fn=on_description_search, | |
inputs=[description_input], | |
outputs=[description_output, loading_msg] | |
) | |
return { | |
'living_space': living_space, | |
'exercise_time': exercise_time, | |
'grooming_commitment': grooming_commitment, | |
'experience_level': experience_level, | |
'has_children': has_children, | |
'noise_tolerance': noise_tolerance, | |
'get_recommendations_btn': get_recommendations_btn, | |
'recommendation_output': recommendation_output, | |
'description_input': description_input, | |
'description_search_btn': description_search_btn, | |
'description_output': description_output | |
} | |