PawMatchAI / app.py
DawnC's picture
Update app.py
0b38e77
raw
history blame
18.5 kB
import os
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
import torch.nn.functional as F
from torchvision import transforms
from PIL import Image
from data_manager import get_dog_description
from urllib.parse import quote
# os.system('pip install ultralytics')
from ultralytics import YOLO
from PIL import ImageDraw
# 下載YOLOv8預訓練模型
model_yolo = YOLO('yolov8n.pt') # 使用 YOLOv8 預訓練模型
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
"Wire-Haired_Fox_Terrier"]
class MultiHeadAttention(nn.Module):
def __init__(self, in_dim, num_heads=8):
super().__init__()
self.num_heads = num_heads
self.head_dim = max(1, in_dim // num_heads)
self.scaled_dim = self.head_dim * num_heads
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
def forward(self, x):
N = x.shape[0]
x = self.fc_in(x)
q = self.query(x).view(N, self.num_heads, self.head_dim)
k = self.key(x).view(N, self.num_heads, self.head_dim)
v = self.value(x).view(N, self.num_heads, self.head_dim)
energy = torch.einsum("nqd,nkd->nqk", [q, k])
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
out = torch.einsum("nqk,nvd->nqd", [attention, v])
out = out.reshape(N, self.scaled_dim)
out = self.fc_out(out)
return out
class BaseModel(nn.Module):
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
super().__init__()
self.device = device
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
self.feature_dim = self.backbone.classifier[1].in_features
self.backbone.classifier = nn.Identity()
self.num_heads = max(1, min(8, self.feature_dim // 64))
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
self.classifier = nn.Sequential(
nn.LayerNorm(self.feature_dim),
nn.Dropout(0.3),
nn.Linear(self.feature_dim, num_classes)
)
self.to(device)
def forward(self, x):
x = x.to(self.device)
features = self.backbone(x)
attended_features = self.attention(features)
logits = self.classifier(attended_features)
return logits, attended_features
num_classes = 120
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = BaseModel(num_classes=num_classes, device=device)
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
# evaluation mode
model.eval()
# Image preprocessing function
def preprocess_image(image):
# If the image is numpy.ndarray turn into PIL.Image
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Use torchvision.transforms to process images
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def get_akc_breeds_link():
return "https://www.akc.org/dog-breeds/"
# def predict(image):
# if image is None:
# return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# try:
# image_tensor = preprocess_image(image)
# with torch.no_grad():
# output = model(image_tensor)
# logits = output[0] if isinstance(output, tuple) else output
# probabilities = F.softmax(logits, dim=1)
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
# top1_prob = topk_probs[0][0].item()
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
# if top1_prob >= 0.5:
# breed = topk_breeds[0]
# description = get_dog_description(breed)
# return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# elif top1_prob < 0.2:
# return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
# gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
# else:
# explanation = (
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
# "Click on a button to view more information about the breed."
# )
# return explanation, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
# except Exception as e:
# return f"An error occurred: {e}", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
# def format_description(description, breed):
# if isinstance(description, dict):
# formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
# else:
# formatted_description = description
# akc_link = get_akc_breeds_link()
# formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
# disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
# "You may need to search for the specific breed on that page. "
# "I am not responsible for the content on external sites. "
# "Please refer to the AKC's terms of use and privacy policy.*")
# formatted_description += disclaimer
# return formatted_description
# def show_details(breed):
# breed_name = breed.split("More about ")[-1]
# description = get_dog_description(breed_name)
# return format_description(description, breed_name)
# with gr.Blocks(css="""
# .container {
# max-width: 900px;
# margin: 0 auto;
# padding: 20px;
# background-color: rgba(255, 255, 255, 0.9);
# border-radius: 15px;
# box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
# }
# .gr-form { display: flex; flex-direction: column; align-items: center; }
# .gr-box { width: 100%; max-width: 500px; }
# .output-markdown, .output-image {
# margin-top: 20px;
# padding: 15px;
# background-color: #f5f5f5;
# border-radius: 10px;
# }
# .examples {
# display: flex;
# justify-content: center;
# flex-wrap: wrap;
# gap: 10px;
# margin-top: 20px;
# }
# .examples img {
# width: 100px;
# height: 100px;
# object-fit: cover;
# }
# """) as iface:
# gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
# gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
# with gr.Row():
# input_image = gr.Image(label="Upload a dog image", type="numpy")
# output = gr.Markdown(label="Prediction Results")
# with gr.Row():
# btn1 = gr.Button("View More 1", visible=False)
# btn2 = gr.Button("View More 2", visible=False)
# btn3 = gr.Button("View More 3", visible=False)
# input_image.change(predict, inputs=input_image, outputs=[output, btn1, btn2, btn3])
# btn1.click(show_details, inputs=btn1, outputs=output)
# btn2.click(show_details, inputs=btn2, outputs=output)
# btn3.click(show_details, inputs=btn3, outputs=output)
# gr.Examples(
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
# inputs=input_image
# )
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')
# # launch the program
# if __name__ == "__main__":
# iface.launch()
def detect_dogs(image):
results = yolo_model(image)
dogs = []
for result in results:
for box in result.boxes:
if box.cls == 16: # COCO 資料集中的狗類別是 16
xyxy = box.xyxy[0].tolist()
confidence = box.conf.item()
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
dogs.append((cropped_image, confidence, xyxy))
return dogs
def predict_breed(cropped_image):
image_tensor = preprocess_image(cropped_image)
with torch.no_grad():
output = model(image_tensor)
logits = output[0] if isinstance(output, tuple) else output
probabilities = F.softmax(logits, dim=1)
topk_probs, topk_indices = torch.topk(probabilities, k=3)
top1_prob = topk_probs[0][0].item()
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
return top1_prob, topk_breeds, topk_probs_percent
def predict(image):
if image is None:
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
try:
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
dogs = detect_dogs(image)
if len(dogs) == 0:
return "No dogs detected or the image is unclear. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
explanations = []
visible_buttons = []
annotated_image = image.copy()
draw = ImageDraw.Draw(annotated_image)
for i, (cropped_image, _, box) in enumerate(dogs):
top1_prob, topk_breeds, topk_probs_percent = predict_breed(cropped_image)
draw.rectangle(box, outline="red", width=3)
draw.text((box[0], box[1]), f"Dog {i+1}", fill="red")
if top1_prob >= 0.5:
breed = topk_breeds[0]
description = get_dog_description(breed)
explanations.append(f"Dog {i+1}: **{breed}**\n{format_description(description, breed)}")
elif 0.2 <= top1_prob < 0.5:
explanation = (
f"Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:\n"
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]})\n"
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]})\n"
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]})\n"
)
explanations.append(explanation)
visible_buttons.extend([f"More about {topk_breeds[0]}", f"More about {topk_breeds[1]}", f"More about {topk_breeds[2]}"])
else:
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
final_explanation = "\n\n".join(explanations)
return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=len(visible_buttons) >= 2, value=visible_buttons[1] if len(visible_buttons) >= 2 else ""), gr.update(visible=len(visible_buttons) >= 3, value=visible_buttons[2] if len(visible_buttons) >= 3 else "")
except Exception as e:
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def format_description(description, breed):
if isinstance(description, dict):
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
else:
formatted_description = description
akc_link = get_akc_breeds_link()
formatted_description += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
"You may need to search for the specific breed on that page. "
"I am not responsible for the content on external sites. "
"Please refer to the AKC's terms of use and privacy policy.*")
formatted_description += disclaimer
return formatted_description
def show_details(breed):
breed_name = breed.split("More about ")[-1]
description = get_dog_description(breed_name)
return format_description(description, breed_name)
with gr.Blocks(css="""
.container {
max-width: 900px;
margin: 0 auto;
padding: 20px;
background-color: rgba(255, 255, 255, 0.9);
border-radius: 15px;
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
}
.gr-form { display: flex; flex-direction: column; align-items: center; }
.gr-box { width: 100%; max-width: 500px; }
.output-markdown, .output-image {
margin-top: 20px;
padding: 15px;
background-color: #f5f5f5;
border-radius: 10px;
}
.examples {
display: flex;
justify-content: center;
flex-wrap: wrap;
gap: 10px;
margin-top: 20px;
}
.examples img {
width: 100px;
height: 100px;
object-fit: cover;
}
""") as iface:
gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>")
gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
with gr.Row():
input_image = gr.Image(label="Upload a dog image", type="pil")
output_image = gr.Image(label="Annotated Image")
output = gr.Markdown(label="Prediction Results")
with gr.Row():
btn1 = gr.Button("View More 1", visible=False)
btn2 = gr.Button("View More 2", visible=False)
btn3 = gr.Button("View More 3", visible=False)
input_image.change(predict, inputs=input_image, outputs=[output, output_image, btn1, btn2, btn3])
btn1.click(show_details, inputs=btn1, outputs=output)
btn2.click(show_details, inputs=btn2, outputs=output)
btn3.click(show_details, inputs=btn3, outputs=output)
gr.Examples(
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
inputs=input_image
)
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">Dog Breed Classifier</a>')
if __name__ == "__main__":
iface.launch()