DawnC commited on
Commit
03abe3f
1 Parent(s): 9072e64

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -107
app.py CHANGED
@@ -185,63 +185,10 @@ async def predict_single_dog(image):
185
  return probabilities[0], breeds[:3], relative_probs
186
 
187
 
188
- # async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
189
- # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
190
- # dogs = []
191
- # boxes = []
192
- # for box in results.boxes:
193
- # if box.cls == 16: # COCO dataset class for dog is 16
194
- # xyxy = box.xyxy[0].tolist()
195
- # confidence = box.conf.item()
196
- # boxes.append((xyxy, confidence))
197
-
198
- # if not boxes:
199
- # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
200
- # else:
201
- # nms_boxes = non_max_suppression(boxes, iou_threshold)
202
-
203
- # for box, confidence in nms_boxes:
204
- # x1, y1, x2, y2 = box
205
- # w, h = x2 - x1, y2 - y1
206
- # x1 = max(0, x1 - w * 0.05)
207
- # y1 = max(0, y1 - h * 0.05)
208
- # x2 = min(image.width, x2 + w * 0.05)
209
- # y2 = min(image.height, y2 + h * 0.05)
210
- # cropped_image = image.crop((x1, y1, x2, y2))
211
- # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
212
-
213
- # return dogs
214
-
215
- # def non_max_suppression(boxes, iou_threshold):
216
- # keep = []
217
- # boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
218
- # while boxes:
219
- # current = boxes.pop(0)
220
- # keep.append(current)
221
- # boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
222
- # return keep
223
-
224
-
225
- # def calculate_iou(box1, box2):
226
- # x1 = max(box1[0], box2[0])
227
- # y1 = max(box1[1], box2[1])
228
- # x2 = min(box1[2], box2[2])
229
- # y2 = min(box1[3], box2[3])
230
-
231
- # intersection = max(0, x2 - x1) * max(0, y2 - y1)
232
- # area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
233
- # area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
234
-
235
- # iou = intersection / float(area1 + area2 - intersection)
236
- # return iou
237
-
238
-
239
- async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55, sigma=0.5):
240
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
241
  dogs = []
242
  boxes = []
243
-
244
- # 收集所有狗的檢測結果
245
  for box in results.boxes:
246
  if box.cls == 16: # COCO dataset class for dog is 16
247
  xyxy = box.xyxy[0].tolist()
@@ -251,69 +198,31 @@ async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55, s
251
  if not boxes:
252
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
253
  else:
254
- # 使用SoftNMS替代原有的NMS
255
- nms_boxes = soft_nms(boxes, iou_threshold, sigma)
256
 
257
- # 處理保留的框
258
  for box, confidence in nms_boxes:
259
  x1, y1, x2, y2 = box
260
- # 擴大框的範圍以包含更多上下文
261
  w, h = x2 - x1, y2 - y1
262
- x1 = max(0, x1 - w * 0.1) # 增加到10%的margin
263
- y1 = max(0, y1 - h * 0.1)
264
- x2 = min(image.width, x2 + w * 0.1)
265
- y2 = min(image.height, y2 + h * 0.1)
266
  cropped_image = image.crop((x1, y1, x2, y2))
267
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
268
 
269
  return dogs
270
 
271
- def soft_nms(boxes, iou_threshold=0.55, sigma=0.5, score_threshold=0.25):
272
- """
273
- SoftNMS with Gaussian decay
274
- """
275
- if not boxes:
276
- return []
277
-
278
- # 轉換格式以便處理
279
- box_coords = np.array([box[0] for box in boxes])
280
- scores = np.array([box[1] for box in boxes])
281
-
282
- # 按照confidence排序
283
- indices = np.argsort(scores)[::-1]
284
- box_coords = box_coords[indices]
285
- scores = scores[indices]
286
-
287
- keep_boxes = []
288
- keep_scores = []
289
-
290
- while len(scores) > 0:
291
- # 保留最高分數的框
292
- keep_boxes.append(box_coords[0].tolist())
293
- keep_scores.append(scores[0])
294
-
295
- if len(scores) == 1:
296
- break
297
-
298
- # 計算當前最高分框與其他所有框的IoU
299
- ious = np.array([calculate_iou(box_coords[0], box) for box in box_coords[1:]])
300
-
301
- # 使用高斯衰減更新分數
302
- scores[1:] = scores[1:] * np.exp(-(ious * ious) / sigma)
303
-
304
- # 移除最高分的框並過濾低於閾值的框
305
- box_coords = box_coords[1:]
306
- scores = scores[1:]
307
- mask = scores > score_threshold
308
- box_coords = box_coords[mask]
309
- scores = scores[mask]
310
-
311
- return list(zip(keep_boxes, keep_scores))
312
 
313
  def calculate_iou(box1, box2):
314
- """
315
- IoU 計算
316
- """
317
  x1 = max(box1[0], box2[0])
318
  y1 = max(box1[1], box2[1])
319
  x2 = min(box1[2], box2[2])
@@ -327,7 +236,6 @@ def calculate_iou(box1, box2):
327
  return iou
328
 
329
 
330
-
331
  def create_breed_comparison(breed1: str, breed2: str) -> dict:
332
  breed1_info = get_dog_description(breed1)
333
  breed2_info = get_dog_description(breed2)
 
185
  return probabilities[0], breeds[:3], relative_probs
186
 
187
 
188
+ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
190
  dogs = []
191
  boxes = []
 
 
192
  for box in results.boxes:
193
  if box.cls == 16: # COCO dataset class for dog is 16
194
  xyxy = box.xyxy[0].tolist()
 
198
  if not boxes:
199
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
200
  else:
201
+ nms_boxes = non_max_suppression(boxes, iou_threshold)
 
202
 
 
203
  for box, confidence in nms_boxes:
204
  x1, y1, x2, y2 = box
 
205
  w, h = x2 - x1, y2 - y1
206
+ x1 = max(0, x1 - w * 0.05)
207
+ y1 = max(0, y1 - h * 0.05)
208
+ x2 = min(image.width, x2 + w * 0.05)
209
+ y2 = min(image.height, y2 + h * 0.05)
210
  cropped_image = image.crop((x1, y1, x2, y2))
211
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
212
 
213
  return dogs
214
 
215
+ def non_max_suppression(boxes, iou_threshold):
216
+ keep = []
217
+ boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
218
+ while boxes:
219
+ current = boxes.pop(0)
220
+ keep.append(current)
221
+ boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
222
+ return keep
223
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
 
225
  def calculate_iou(box1, box2):
 
 
 
226
  x1 = max(box1[0], box2[0])
227
  y1 = max(box1[1], box2[1])
228
  x2 = min(box1[2], box2[2])
 
236
  return iou
237
 
238
 
 
239
  def create_breed_comparison(breed1: str, breed2: str) -> dict:
240
  breed1_info = get_dog_description(breed1)
241
  breed2_info = get_dog_description(breed2)