Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -251,107 +251,97 @@ def get_akc_breeds_link():
|
|
251 |
# iface.launch()
|
252 |
|
253 |
|
254 |
-
# 使用 YOLOv8 進行狗偵測
|
255 |
def detect_dogs(image):
|
256 |
-
results = yolo_model
|
257 |
dogs = []
|
258 |
-
|
259 |
for result in results:
|
260 |
for box in result.boxes:
|
261 |
-
if box.cls == 16: # COCO 資料集中的狗類別是16
|
262 |
-
xyxy = box.xyxy
|
263 |
-
confidence = box.conf
|
264 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
265 |
dogs.append((cropped_image, confidence, xyxy))
|
266 |
-
|
267 |
return dogs
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
def predict(image):
|
270 |
if image is None:
|
271 |
-
return "
|
272 |
|
273 |
try:
|
274 |
-
# 確保圖片轉換為 PIL.Image 格式
|
275 |
if isinstance(image, np.ndarray):
|
276 |
image = Image.fromarray(image)
|
277 |
|
278 |
-
# 使用 YOLO 偵測狗
|
279 |
dogs = detect_dogs(image)
|
280 |
if len(dogs) == 0:
|
281 |
-
return "
|
282 |
|
283 |
-
# 開始處理每一隻狗
|
284 |
explanations = []
|
285 |
visible_buttons = []
|
286 |
annotated_image = image.copy()
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
description = get_dog_description(breed)
|
311 |
-
explanations.append(f"Dog {i+1}: **{breed}**\n{format_description(description, breed)}")
|
312 |
-
# 信心度 20%-49%,顯示 Top 3 品種
|
313 |
-
elif 0.2 <= top1_prob < 0.5:
|
314 |
-
explanation = (
|
315 |
-
f"Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds:\n"
|
316 |
-
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]})\n"
|
317 |
-
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]})\n"
|
318 |
-
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]})\n"
|
319 |
-
)
|
320 |
-
explanations.append(explanation)
|
321 |
-
visible_buttons.extend([f"More about {topk_breeds[0]}", f"More about {topk_breeds[1]}", f"More about {topk_breeds[2]}"])
|
322 |
-
else:
|
323 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
324 |
|
325 |
final_explanation = "\n\n".join(explanations)
|
326 |
-
return
|
327 |
|
328 |
except Exception as e:
|
329 |
-
return f"
|
330 |
-
|
331 |
|
332 |
def format_description(description, breed):
|
333 |
if isinstance(description, dict):
|
334 |
-
formatted_description = "\n
|
335 |
else:
|
336 |
formatted_description = description
|
337 |
|
338 |
akc_link = get_akc_breeds_link()
|
339 |
-
formatted_description += f"\n\n
|
340 |
|
341 |
-
disclaimer = ("\n\n
|
342 |
-
"
|
343 |
-
"
|
344 |
-
"
|
345 |
formatted_description += disclaimer
|
346 |
|
347 |
return formatted_description
|
348 |
|
349 |
def show_details(breed):
|
350 |
-
breed_name = breed.split("
|
351 |
description = get_dog_description(breed_name)
|
352 |
return format_description(description, breed_name)
|
353 |
|
354 |
-
|
355 |
with gr.Blocks(css="""
|
356 |
.container {
|
357 |
max-width: 900px;
|
@@ -383,20 +373,21 @@ with gr.Blocks(css="""
|
|
383 |
}
|
384 |
""") as iface:
|
385 |
|
386 |
-
gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶
|
387 |
-
gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'
|
388 |
|
389 |
with gr.Row():
|
390 |
-
input_image = gr.Image(label="
|
391 |
-
output_image = gr.Image(label="
|
392 |
-
|
|
|
393 |
|
394 |
with gr.Row():
|
395 |
-
btn1 = gr.Button("
|
396 |
-
btn2 = gr.Button("
|
397 |
-
btn3 = gr.Button("
|
398 |
|
399 |
-
input_image.change(predict, inputs=input_image, outputs=[
|
400 |
|
401 |
btn1.click(show_details, inputs=btn1, outputs=output)
|
402 |
btn2.click(show_details, inputs=btn2, outputs=output)
|
@@ -407,10 +398,8 @@ with gr.Blocks(css="""
|
|
407 |
inputs=input_image
|
408 |
)
|
409 |
|
410 |
-
gr.HTML('
|
411 |
|
412 |
-
# launch the program
|
413 |
if __name__ == "__main__":
|
414 |
iface.launch()
|
415 |
|
416 |
-
|
|
|
251 |
# iface.launch()
|
252 |
|
253 |
|
|
|
254 |
def detect_dogs(image):
|
255 |
+
results = yolo_model(image)
|
256 |
dogs = []
|
|
|
257 |
for result in results:
|
258 |
for box in result.boxes:
|
259 |
+
if box.cls == 16: # COCO 資料集中的狗類別是 16
|
260 |
+
xyxy = box.xyxy[0].tolist()
|
261 |
+
confidence = box.conf.item()
|
262 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
263 |
dogs.append((cropped_image, confidence, xyxy))
|
|
|
264 |
return dogs
|
265 |
|
266 |
+
def predict_breed(cropped_image):
|
267 |
+
image_tensor = preprocess_image(cropped_image)
|
268 |
+
with torch.no_grad():
|
269 |
+
output = model(image_tensor)
|
270 |
+
logits = output[0] if isinstance(output, tuple) else output
|
271 |
+
probabilities = F.softmax(logits, dim=1)
|
272 |
+
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
273 |
+
top1_prob = topk_probs[0][0].item()
|
274 |
+
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
275 |
+
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
276 |
+
return top1_prob, topk_breeds, topk_probs_percent
|
277 |
+
|
278 |
def predict(image):
|
279 |
if image is None:
|
280 |
+
return "請上傳一張圖片來開始。", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
281 |
|
282 |
try:
|
|
|
283 |
if isinstance(image, np.ndarray):
|
284 |
image = Image.fromarray(image)
|
285 |
|
|
|
286 |
dogs = detect_dogs(image)
|
287 |
if len(dogs) == 0:
|
288 |
+
return "未檢測到狗或圖片不清晰。請上傳一張更清晰的狗的圖片。", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
289 |
|
|
|
290 |
explanations = []
|
291 |
visible_buttons = []
|
292 |
annotated_image = image.copy()
|
293 |
+
draw = ImageDraw.Draw(annotated_image)
|
294 |
+
|
295 |
+
for i, (cropped_image, _, box) in enumerate(dogs):
|
296 |
+
top1_prob, topk_breeds, topk_probs_percent = predict_breed(cropped_image)
|
297 |
+
|
298 |
+
draw.rectangle(box, outline="red", width=3)
|
299 |
+
draw.text((box[0], box[1]), f"狗 {i+1}", fill="red")
|
300 |
+
|
301 |
+
if top1_prob >= 0.5:
|
302 |
+
breed = topk_breeds[0]
|
303 |
+
description = get_dog_description(breed)
|
304 |
+
explanations.append(f"狗 {i+1}: **{breed}**\n{format_description(description, breed)}")
|
305 |
+
elif 0.2 <= top1_prob < 0.5:
|
306 |
+
explanation = (
|
307 |
+
f"狗 {i+1}: 中等置信度檢測。以下是前3個可能的品種:\n"
|
308 |
+
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]})\n"
|
309 |
+
f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]})\n"
|
310 |
+
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]})\n"
|
311 |
+
)
|
312 |
+
explanations.append(explanation)
|
313 |
+
visible_buttons.extend([f"更多關於 {topk_breeds[0]}", f"更多關於 {topk_breeds[1]}", f"更多關於 {topk_breeds[2]}"])
|
314 |
+
else:
|
315 |
+
explanations.append(f"狗 {i+1}: 圖片不清晰或品種不在數據集中。")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
316 |
|
317 |
final_explanation = "\n\n".join(explanations)
|
318 |
+
return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=len(visible_buttons) >= 2, value=visible_buttons[1] if len(visible_buttons) >= 2 else ""), gr.update(visible=len(visible_buttons) >= 3, value=visible_buttons[2] if len(visible_buttons) >= 3 else "")
|
319 |
|
320 |
except Exception as e:
|
321 |
+
return f"發生錯誤:{e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
322 |
|
323 |
def format_description(description, breed):
|
324 |
if isinstance(description, dict):
|
325 |
+
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
326 |
else:
|
327 |
formatted_description = description
|
328 |
|
329 |
akc_link = get_akc_breeds_link()
|
330 |
+
formatted_description += f"\n\n**想了解更多狗品種資訊?** [訪問 AKC 狗品種頁面]({akc_link})並搜尋 {breed} 以獲取詳細資訊。"
|
331 |
|
332 |
+
disclaimer = ("\n\n*免責聲明:提供的外部連結指向美國養犬俱樂部(AKC)的狗品種頁面。"
|
333 |
+
"您可能需要在該頁面上搜索特定品種。"
|
334 |
+
"我對外部網站的內容不負責任。"
|
335 |
+
"請參閱 AKC 的使用條款和隱私政策。*")
|
336 |
formatted_description += disclaimer
|
337 |
|
338 |
return formatted_description
|
339 |
|
340 |
def show_details(breed):
|
341 |
+
breed_name = breed.split("更多關於 ")[-1]
|
342 |
description = get_dog_description(breed_name)
|
343 |
return format_description(description, breed_name)
|
344 |
|
|
|
345 |
with gr.Blocks(css="""
|
346 |
.container {
|
347 |
max-width: 900px;
|
|
|
373 |
}
|
374 |
""") as iface:
|
375 |
|
376 |
+
gr.HTML("<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 狗狗品種分類器 🔍</h1>")
|
377 |
+
gr.HTML("<p style='font-family:Open Sans; color:#34495E; text-align:center;'>上傳一張狗狗的照片,模型將預測其品種,提供詳細資訊,並包含額外的資訊連結!</p>")
|
378 |
|
379 |
with gr.Row():
|
380 |
+
input_image = gr.Image(label="上傳狗狗圖片", type="pil")
|
381 |
+
output_image = gr.Image(label="標註後的圖片")
|
382 |
+
|
383 |
+
output = gr.Markdown(label="預測結果")
|
384 |
|
385 |
with gr.Row():
|
386 |
+
btn1 = gr.Button("查看更多 1", visible=False)
|
387 |
+
btn2 = gr.Button("查看更多 2", visible=False)
|
388 |
+
btn3 = gr.Button("查看更多 3", visible=False)
|
389 |
|
390 |
+
input_image.change(predict, inputs=input_image, outputs=[output, output_image, btn1, btn2, btn3])
|
391 |
|
392 |
btn1.click(show_details, inputs=btn1, outputs=output)
|
393 |
btn2.click(show_details, inputs=btn2, outputs=output)
|
|
|
398 |
inputs=input_image
|
399 |
)
|
400 |
|
401 |
+
gr.HTML('如需了解本項目的更多詳情和其他作品,歡迎訪問我的 GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier">狗狗品種分類器</a>')
|
402 |
|
|
|
403 |
if __name__ == "__main__":
|
404 |
iface.launch()
|
405 |
|
|