Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -168,39 +168,10 @@ async def predict_single_dog(image):
|
|
168 |
return top1_prob, topk_breeds, topk_probs_percent
|
169 |
|
170 |
|
171 |
-
|
172 |
-
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
173 |
-
# dogs = []
|
174 |
-
# boxes = []
|
175 |
-
# for box in results.boxes:
|
176 |
-
# if box.cls == 16: # COCO dataset class for dog is 16
|
177 |
-
# xyxy = box.xyxy[0].tolist()
|
178 |
-
# confidence = box.conf.item()
|
179 |
-
# boxes.append((xyxy, confidence))
|
180 |
-
|
181 |
-
# if not boxes:
|
182 |
-
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
183 |
-
# else:
|
184 |
-
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
185 |
-
|
186 |
-
# for box, confidence in nms_boxes:
|
187 |
-
# x1, y1, x2, y2 = box
|
188 |
-
# w, h = x2 - x1, y2 - y1
|
189 |
-
# x1 = max(0, x1 - w * 0.05)
|
190 |
-
# y1 = max(0, y1 - h * 0.05)
|
191 |
-
# x2 = min(image.width, x2 + w * 0.05)
|
192 |
-
# y2 = min(image.height, y2 + h * 0.05)
|
193 |
-
# cropped_image = image.crop((x1, y1, x2, y2))
|
194 |
-
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
195 |
-
|
196 |
-
# return dogs
|
197 |
-
|
198 |
-
|
199 |
-
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.4):
|
200 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
201 |
dogs = []
|
202 |
boxes = []
|
203 |
-
|
204 |
for box in results.boxes:
|
205 |
if box.cls == 16: # COCO dataset class for dog is 16
|
206 |
xyxy = box.xyxy[0].tolist()
|
@@ -213,54 +184,57 @@ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.4):
|
|
213 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
214 |
|
215 |
for box, confidence in nms_boxes:
|
216 |
-
x1, y1, x2, y2 =
|
|
|
|
|
|
|
|
|
|
|
217 |
cropped_image = image.crop((x1, y1, x2, y2))
|
218 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
219 |
|
220 |
-
# 應用過濾器來移除可能的錯誤檢測
|
221 |
-
dogs = filter_detections(dogs, (image.width, image.height))
|
222 |
-
|
223 |
return dogs
|
224 |
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
-
|
235 |
-
|
|
|
|
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
merged = []
|
242 |
-
while boxes:
|
243 |
-
base_box = boxes.pop(0)
|
244 |
-
i = 0
|
245 |
-
while i < len(boxes):
|
246 |
-
if calculate_iou(base_box[0], boxes[i][0]) > overlap_threshold:
|
247 |
-
# 合併框,取較大的置信度
|
248 |
-
merged_box = merge_boxes(base_box[0], boxes[i][0])
|
249 |
-
merged_conf = max(base_box[1], boxes[i][1])
|
250 |
-
base_box = (merged_box, merged_conf)
|
251 |
-
boxes.pop(i)
|
252 |
-
else:
|
253 |
-
i += 1
|
254 |
-
merged.append(base_box)
|
255 |
-
return merged
|
256 |
-
|
257 |
-
def merge_boxes(box1, box2):
|
258 |
-
x1 = min(box1[0], box2[0])
|
259 |
-
y1 = min(box1[1], box2[1])
|
260 |
-
x2 = max(box1[2], box2[2])
|
261 |
-
y2 = max(box1[3], box2[3])
|
262 |
-
return [x1, y1, x2, y2]
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
|
266 |
def non_max_suppression(boxes, iou_threshold):
|
|
|
168 |
return top1_prob, topk_breeds, topk_probs_percent
|
169 |
|
170 |
|
171 |
+
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.55):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
173 |
dogs = []
|
174 |
boxes = []
|
|
|
175 |
for box in results.boxes:
|
176 |
if box.cls == 16: # COCO dataset class for dog is 16
|
177 |
xyxy = box.xyxy[0].tolist()
|
|
|
184 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
185 |
|
186 |
for box, confidence in nms_boxes:
|
187 |
+
x1, y1, x2, y2 = box
|
188 |
+
w, h = x2 - x1, y2 - y1
|
189 |
+
x1 = max(0, x1 - w * 0.05)
|
190 |
+
y1 = max(0, y1 - h * 0.05)
|
191 |
+
x2 = min(image.width, x2 + w * 0.05)
|
192 |
+
y2 = min(image.height, y2 + h * 0.05)
|
193 |
cropped_image = image.crop((x1, y1, x2, y2))
|
194 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
195 |
|
|
|
|
|
|
|
196 |
return dogs
|
197 |
|
198 |
+
|
199 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
|
200 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
201 |
+
# dogs = []
|
202 |
+
# boxes = []
|
203 |
|
204 |
+
# for box in results.boxes:
|
205 |
+
# if box.cls == 16: # COCO dataset class for dog is 16
|
206 |
+
# xyxy = box.xyxy[0].tolist()
|
207 |
+
# confidence = box.conf.item()
|
208 |
+
# boxes.append((xyxy, confidence))
|
209 |
+
|
210 |
+
# if not boxes:
|
211 |
+
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
212 |
+
# else:
|
213 |
+
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
214 |
|
215 |
+
# for box, confidence in nms_boxes:
|
216 |
+
# x1, y1, x2, y2 = [int(coord) for coord in box]
|
217 |
+
# cropped_image = image.crop((x1, y1, x2, y2))
|
218 |
+
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
219 |
|
220 |
+
# # 應用過濾器來移除可能的錯誤檢測
|
221 |
+
# dogs = filter_detections(dogs, (image.width, image.height))
|
222 |
+
|
223 |
+
# return dogs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
+
# def filter_detections(dogs, image_size):
|
226 |
+
# filtered_dogs = []
|
227 |
+
# image_area = image_size[0] * image_size[1]
|
228 |
+
|
229 |
+
# for dog in dogs:
|
230 |
+
# _, _, box = dog
|
231 |
+
# dog_area = (box[2] - box[0]) * (box[3] - box[1])
|
232 |
+
# area_ratio = dog_area / image_area
|
233 |
+
|
234 |
+
# if 0.01 < area_ratio < 0.9: # 過濾掉太小或太大的檢測框
|
235 |
+
# filtered_dogs.append(dog)
|
236 |
+
|
237 |
+
# return filtered_dogs
|
238 |
|
239 |
|
240 |
def non_max_suppression(boxes, iou_threshold):
|