Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -143,129 +143,6 @@ def preprocess_image(image):
|
|
143 |
def get_akc_breeds_link():
|
144 |
return "https://www.akc.org/dog-breeds/"
|
145 |
|
146 |
-
# def predict(image):
|
147 |
-
# try:
|
148 |
-
# image_tensor = preprocess_image(image)
|
149 |
-
# with torch.no_grad():
|
150 |
-
# output = model(image_tensor)
|
151 |
-
# if isinstance(output, tuple):
|
152 |
-
# logits = output[0]
|
153 |
-
# else:
|
154 |
-
# logits = output
|
155 |
-
|
156 |
-
# # 取得預測的top k結果
|
157 |
-
# probabilities = F.softmax(logits, dim=1)
|
158 |
-
# topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
159 |
-
|
160 |
-
# # 檢查最高的預測機率
|
161 |
-
# top1_prob = topk_probs[0][0].item()
|
162 |
-
|
163 |
-
# if top1_prob >= 0.5:
|
164 |
-
# # 正確辨識時,返回該品種資訊
|
165 |
-
# predicted = topk_indices[0][0]
|
166 |
-
# breed = dog_breeds[predicted.item()]
|
167 |
-
# description = get_dog_description(breed)
|
168 |
-
# akc_link = get_akc_breeds_link()
|
169 |
-
|
170 |
-
# if isinstance(description, dict):
|
171 |
-
# description_str = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
172 |
-
# else:
|
173 |
-
# description_str = description
|
174 |
-
|
175 |
-
# # 添加AKC連結
|
176 |
-
# description_str += f"\n\n**Want to learn more about dog breeds?** [Visit the AKC dog breeds page]({akc_link}) and search for {breed} to find detailed information."
|
177 |
-
|
178 |
-
# # 添加免責聲明
|
179 |
-
# disclaimer = ("\n\n*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page. "
|
180 |
-
# "You may need to search for the specific breed on that page. "
|
181 |
-
# "I am not responsible for the content on external sites. "
|
182 |
-
# "Please refer to the AKC's terms of use and privacy policy.*")
|
183 |
-
# description_str += disclaimer
|
184 |
-
|
185 |
-
# return description_str
|
186 |
-
|
187 |
-
# else:
|
188 |
-
# # 不確定時,返回top 3的預測結果
|
189 |
-
# topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
190 |
-
# topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
191 |
-
|
192 |
-
# # 用粗體返回品種和機率
|
193 |
-
# topk_results = "\n\n".join([f"**{i+1}. {breed}** ({prob} confidence)" for i, (breed, prob) in enumerate(zip(topk_breeds, topk_probs_percent))])
|
194 |
-
|
195 |
-
# # 提供說明
|
196 |
-
# explanation = (
|
197 |
-
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n{topk_results}\n\n"
|
198 |
-
# "This can happen if the image quality is low or the breed is rare in the dataset. "
|
199 |
-
# "Please try uploading a clearer image or a different angle of the dog. "
|
200 |
-
# "For more accurate results, ensure the dog is the main subject of the photo."
|
201 |
-
# )
|
202 |
-
|
203 |
-
# return explanation
|
204 |
-
# except Exception as e:
|
205 |
-
# return f"An error occurred: {e}"
|
206 |
-
|
207 |
-
# iface = gr.Interface(
|
208 |
-
# fn=predict,
|
209 |
-
# inputs=gr.Image(label="Upload a dog image", type="numpy"),
|
210 |
-
# outputs=gr.Markdown(label="Prediction Results"),
|
211 |
-
# title="<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>",
|
212 |
-
# article= 'For more details on this project and other work, feel free to visit my GitHub [Dog Breed Classifier](https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog%20Breed%20Classifier)',
|
213 |
-
# description="<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and model will predict its breed, provide detailed information, and include an extra information link!</p>",
|
214 |
-
# examples=['Border_Collie.jpg',
|
215 |
-
# 'Golden_Retriever.jpeg',
|
216 |
-
# 'Saint_Bernard.jpeg',
|
217 |
-
# 'French_Bulldog.jpeg',
|
218 |
-
# 'Samoyed.jpg'],
|
219 |
-
# css = """
|
220 |
-
# .container {
|
221 |
-
# max-width: 900px;
|
222 |
-
# margin: 0 auto;
|
223 |
-
# padding: 20px;
|
224 |
-
# background-color: rgba(255, 255, 255, 0.9);
|
225 |
-
# border-radius: 15px;
|
226 |
-
# box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
|
227 |
-
# }
|
228 |
-
|
229 |
-
# .gr-form {
|
230 |
-
# display: flex;
|
231 |
-
# flex-direction: column;
|
232 |
-
# align-items: center;
|
233 |
-
# }
|
234 |
-
|
235 |
-
# .gr-box {
|
236 |
-
# width: 100%;
|
237 |
-
# max-width: 500px;
|
238 |
-
# }
|
239 |
-
|
240 |
-
# .output-markdown, .output-image {
|
241 |
-
# margin-top: 20px;
|
242 |
-
# padding: 15px;
|
243 |
-
# background-color: #f5f5f5;
|
244 |
-
# border-radius: 10px;
|
245 |
-
# }
|
246 |
-
|
247 |
-
# .examples {
|
248 |
-
# display: flex;
|
249 |
-
# justify-content: center;
|
250 |
-
# flex-wrap: wrap;
|
251 |
-
# gap: 10px;
|
252 |
-
# margin-top: 20px;
|
253 |
-
# }
|
254 |
-
|
255 |
-
# .examples img {
|
256 |
-
# width: 100px;
|
257 |
-
# height: 100px;
|
258 |
-
# object-fit: cover;
|
259 |
-
# }
|
260 |
-
# """,
|
261 |
-
# theme='default')
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
# # Launch the app
|
266 |
-
# if __name__ == "__main__":
|
267 |
-
# iface.launch()
|
268 |
-
|
269 |
def predict(image):
|
270 |
if image is None:
|
271 |
return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
@@ -288,7 +165,7 @@ def predict(image):
|
|
288 |
description = get_dog_description(breed)
|
289 |
return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
290 |
|
291 |
-
elif top1_prob < 0.
|
292 |
return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
|
293 |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
|
294 |
else:
|
|
|
143 |
def get_akc_breeds_link():
|
144 |
return "https://www.akc.org/dog-breeds/"
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
def predict(image):
|
147 |
if image is None:
|
148 |
return "Please upload an image to get started.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
165 |
description = get_dog_description(breed)
|
166 |
return format_description(description, breed), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
167 |
|
168 |
+
elif top1_prob < 0.2:
|
169 |
return ("The image is too unclear or the dog breed is not in the dataset. Please upload a clearer image of the dog.",
|
170 |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False))
|
171 |
else:
|