DawnC commited on
Commit
15fe181
1 Parent(s): 4152b79

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -151
app.py CHANGED
@@ -26,7 +26,6 @@ from html_templates import (
26
  format_description_html,
27
  format_single_dog_result,
28
  format_multiple_breeds_result,
29
- format_error_message,
30
  format_unknown_breed_message,
31
  format_not_dog_message,
32
  format_warning_html,
@@ -240,37 +239,6 @@ def predict_single_dog(image):
240
 
241
  return probabilities[0], breeds[:3], relative_probs
242
 
243
- # @spaces.GPU
244
- # def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
245
-
246
- # results = model_manager.yolo_model(image, conf=conf_threshold,
247
- # iou=iou_threshold)[0]
248
-
249
- # dogs = []
250
- # boxes = []
251
- # for box in results.boxes:
252
- # if box.cls == 16: # COCO dataset class for dog is 16
253
- # xyxy = box.xyxy[0].tolist()
254
- # confidence = box.conf.item()
255
- # boxes.append((xyxy, confidence))
256
-
257
- # if not boxes:
258
- # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
259
- # else:
260
- # nms_boxes = non_max_suppression(boxes, iou_threshold)
261
-
262
- # for box, confidence in nms_boxes:
263
- # x1, y1, x2, y2 = box
264
- # w, h = x2 - x1, y2 - y1
265
- # x1 = max(0, x1 - w * 0.05)
266
- # y1 = max(0, y1 - h * 0.05)
267
- # x2 = min(image.width, x2 + w * 0.05)
268
- # y2 = min(image.height, y2 + h * 0.05)
269
- # cropped_image = image.crop((x1, y1, x2, y2))
270
- # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
271
-
272
- # return dogs
273
-
274
  @spaces.GPU
275
  def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
276
  """
@@ -374,131 +342,13 @@ def create_breed_comparison(breed1: str, breed2: str) -> dict:
374
 
375
  return comparison_data
376
 
377
-
378
- # def predict(image):
379
- # """
380
- # Main prediction function that handles both single and multiple dog detection.
381
-
382
- # Args:
383
- # image: PIL Image or numpy array
384
-
385
- # Returns:
386
- # tuple: (html_output, annotated_image, initial_state)
387
- # """
388
-
389
- # if image is None:
390
- # return format_warning_html("Please upload an image to start."), None, None
391
-
392
- # try:
393
- # if isinstance(image, np.ndarray):
394
- # image = Image.fromarray(image)
395
-
396
- # # Detect dogs in the image
397
- # dogs = detect_multiple_dogs(image)
398
- # color_scheme = get_color_scheme(len(dogs) == 1)
399
-
400
- # # Prepare for annotation
401
- # annotated_image = image.copy()
402
- # draw = ImageDraw.Draw(annotated_image)
403
-
404
- # try:
405
- # font = ImageFont.truetype("arial.ttf", 24)
406
- # except:
407
- # font = ImageFont.load_default()
408
-
409
- # dogs_info = ""
410
-
411
- # # Process each detected dog
412
- # for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
413
- # color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
414
-
415
- # # Draw box and label on image
416
- # draw.rectangle(box, outline=color, width=4)
417
- # label = f"Dog {i+1}"
418
- # label_bbox = draw.textbbox((0, 0), label, font=font)
419
- # label_width = label_bbox[2] - label_bbox[0]
420
- # label_height = label_bbox[3] - label_bbox[1]
421
-
422
- # # Draw label background and text
423
- # label_x = box[0] + 5
424
- # label_y = box[1] + 5
425
- # draw.rectangle(
426
- # [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
427
- # fill='white',
428
- # outline=color,
429
- # width=2
430
- # )
431
- # draw.text((label_x, label_y), label, fill=color, font=font)
432
-
433
- # # Predict breed
434
- # top1_prob, topk_breeds, relative_probs = predict_single_dog(cropped_image)
435
- # combined_confidence = detection_confidence * top1_prob
436
-
437
- # # Format results based on confidence with error handling
438
- # try:
439
- # if combined_confidence < 0.2:
440
- # dogs_info += format_error_message(color, i+1)
441
- # elif top1_prob >= 0.45:
442
- # breed = topk_breeds[0]
443
- # description = get_dog_description(breed)
444
- # # Handle missing breed description
445
- # if description is None:
446
- # # 如果沒有描述,創建一個基本描述
447
- # description = {
448
- # "Name": breed,
449
- # "Size": "Unknown",
450
- # "Exercise Needs": "Unknown",
451
- # "Grooming Needs": "Unknown",
452
- # "Care Level": "Unknown",
453
- # "Good with Children": "Unknown",
454
- # "Description": f"Identified as {breed.replace('_', ' ')}"
455
- # }
456
- # dogs_info += format_single_dog_result(breed, description, color)
457
- # else:
458
- # # 修改format_multiple_breeds_result的調用,包含錯誤���理
459
- # dogs_info += format_multiple_breeds_result(
460
- # topk_breeds,
461
- # relative_probs,
462
- # color,
463
- # i+1,
464
- # lambda breed: get_dog_description(breed) or {
465
- # "Name": breed,
466
- # "Size": "Unknown",
467
- # "Exercise Needs": "Unknown",
468
- # "Grooming Needs": "Unknown",
469
- # "Care Level": "Unknown",
470
- # "Good with Children": "Unknown",
471
- # "Description": f"Identified as {breed.replace('_', ' ')}"
472
- # }
473
- # )
474
- # except Exception as e:
475
- # print(f"Error formatting results for dog {i+1}: {str(e)}")
476
- # dogs_info += format_error_message(color, i+1)
477
-
478
- # # Wrap final HTML output
479
- # html_output = format_multi_dog_container(dogs_info)
480
-
481
- # # Prepare initial state
482
- # initial_state = {
483
- # "dogs_info": dogs_info,
484
- # "image": annotated_image,
485
- # "is_multi_dog": len(dogs) > 1,
486
- # "html_output": html_output
487
- # }
488
-
489
- # return html_output, annotated_image, initial_state
490
-
491
- # except Exception as e:
492
- # error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
493
- # print(error_msg)
494
- # return format_warning_html(error_msg), None, None
495
-
496
 
497
  @spaces.GPU
498
  def predict(image):
499
  """
500
  主要的預測函數,負責處理狗的檢測和品種辨識。
501
  它整合了YOLO的物體檢測和專門的品種分類模型。
 
502
 
503
  Args:
504
  image: PIL Image 或 numpy array
 
26
  format_description_html,
27
  format_single_dog_result,
28
  format_multiple_breeds_result,
 
29
  format_unknown_breed_message,
30
  format_not_dog_message,
31
  format_warning_html,
 
239
 
240
  return probabilities[0], breeds[:3], relative_probs
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242
  @spaces.GPU
243
  def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
244
  """
 
342
 
343
  return comparison_data
344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345
 
346
  @spaces.GPU
347
  def predict(image):
348
  """
349
  主要的預測函數,負責處理狗的檢測和品種辨識。
350
  它整合了YOLO的物體檢測和專門的品種分類模型。
351
+ 實施雙層檢測,非狗會直接忽略.
352
 
353
  Args:
354
  image: PIL Image 或 numpy array