Spaces:
Running
on
Zero
Running
on
Zero
Update breed_recommendation.py
Browse files- breed_recommendation.py +1 -560
breed_recommendation.py
CHANGED
@@ -122,10 +122,6 @@ def create_recommendation_tab(UserPreferences, get_breed_recommendations, format
|
|
122 |
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
|
123 |
recommendation_output = gr.HTML(label="Breed Recommendations")
|
124 |
|
125 |
-
with gr.Tab("Find by Description"):
|
126 |
-
description_input, description_search_btn, description_output, loading_msg = create_description_search_tab()
|
127 |
-
|
128 |
-
|
129 |
def on_find_match_click(*args):
|
130 |
try:
|
131 |
user_prefs = UserPreferences(
|
@@ -181,549 +177,6 @@ def create_recommendation_tab(UserPreferences, get_breed_recommendations, format
|
|
181 |
import traceback
|
182 |
print(traceback.format_exc())
|
183 |
return "Error getting recommendations"
|
184 |
-
|
185 |
-
|
186 |
-
# def on_description_search(description: str):
|
187 |
-
# try:
|
188 |
-
# # 初始化匹配器
|
189 |
-
# matcher = SmartBreedMatcher(dog_data)
|
190 |
-
# breed_recommendations = matcher.match_user_preference(description, top_n=10)
|
191 |
-
|
192 |
-
# # 從描述中提取用戶偏好
|
193 |
-
# user_prefs = UserPreferences(
|
194 |
-
# living_space="apartment" if any(word in description.lower()
|
195 |
-
# for word in ["apartment", "flat", "condo"]) else "house_small",
|
196 |
-
# yard_access="no_yard" if any(word in description.lower()
|
197 |
-
# for word in ["apartment", "flat", "condo"]) else "private_yard",
|
198 |
-
# exercise_time=120 if any(word in description.lower()
|
199 |
-
# for word in ["active", "exercise", "running", "athletic", "high energy"]) else 60,
|
200 |
-
# exercise_type="active_training" if any(word in description.lower()
|
201 |
-
# for word in ["training", "running", "jogging", "hiking"]) else "moderate_activity",
|
202 |
-
# grooming_commitment="high" if any(word in description.lower()
|
203 |
-
# for word in ["grooming", "brush", "maintain"]) else "medium",
|
204 |
-
# experience_level="experienced" if any(word in description.lower()
|
205 |
-
# for word in ["experienced", "trained", "professional"]) else "intermediate",
|
206 |
-
# time_availability="flexible" if any(word in description.lower()
|
207 |
-
# for word in ["time", "available", "flexible", "home"]) else "moderate",
|
208 |
-
# has_children=any(word in description.lower()
|
209 |
-
# for word in ["children", "kids", "family", "child"]),
|
210 |
-
# children_age="school_age" if any(word in description.lower()
|
211 |
-
# for word in ["school", "elementary"]) else "teenager" if any(word in description.lower()
|
212 |
-
# for word in ["teen", "teenager"]) else "toddler" if any(word in description.lower()
|
213 |
-
# for word in ["baby", "toddler"]) else None,
|
214 |
-
# noise_tolerance="low" if any(word in description.lower()
|
215 |
-
# for word in ["quiet", "peaceful", "silent"]) else "medium",
|
216 |
-
# space_for_play=any(word in description.lower()
|
217 |
-
# for word in ["yard", "garden", "outdoor", "space"]),
|
218 |
-
# other_pets=any(word in description.lower()
|
219 |
-
# for word in ["other pets", "cats", "dogs"]),
|
220 |
-
# climate="moderate",
|
221 |
-
# health_sensitivity="high" if any(word in description.lower()
|
222 |
-
# for word in ["health", "medical", "sensitive"]) else "medium",
|
223 |
-
# barking_acceptance="low" if any(word in description.lower()
|
224 |
-
# for word in ["quiet", "no barking"]) else "medium"
|
225 |
-
# )
|
226 |
-
|
227 |
-
# final_recommendations = []
|
228 |
-
|
229 |
-
# for smart_rec in breed_recommendations:
|
230 |
-
# breed_name = smart_rec['breed']
|
231 |
-
# breed_info = get_dog_description(breed_name)
|
232 |
-
# if not isinstance(breed_info, dict):
|
233 |
-
# continue
|
234 |
-
|
235 |
-
# # 獲取基礎分數
|
236 |
-
# base_score = smart_rec.get('base_score', 0.7)
|
237 |
-
# similarity = smart_rec.get('similarity', 0)
|
238 |
-
# is_preferred = smart_rec.get('is_preferred', False)
|
239 |
-
|
240 |
-
# bonus_reasons = []
|
241 |
-
# bonus_score = 0
|
242 |
-
|
243 |
-
# # 1. 尺寸評估
|
244 |
-
# size = breed_info.get('Size', '')
|
245 |
-
# if size in ['Small', 'Tiny']:
|
246 |
-
# if "apartment" in description.lower():
|
247 |
-
# bonus_score += 0.05
|
248 |
-
# bonus_reasons.append("Suitable size for apartment (+5%)")
|
249 |
-
# else:
|
250 |
-
# bonus_score -= 0.25
|
251 |
-
# bonus_reasons.append("Size too small (-25%)")
|
252 |
-
# elif size == 'Medium':
|
253 |
-
# bonus_score += 0.15
|
254 |
-
# bonus_reasons.append("Ideal size (+15%)")
|
255 |
-
# elif size == 'Large':
|
256 |
-
# if "apartment" in description.lower():
|
257 |
-
# bonus_score -= 0.05
|
258 |
-
# bonus_reasons.append("May be too large for apartment (-5%)")
|
259 |
-
# elif size == 'Giant':
|
260 |
-
# bonus_score -= 0.20
|
261 |
-
# bonus_reasons.append("Size too large (-20%)")
|
262 |
-
|
263 |
-
# # 2. 運動需求評估
|
264 |
-
# exercise_needs = breed_info.get('Exercise_Needs', '')
|
265 |
-
# if any(word in description.lower() for word in ['active', 'energetic', 'running']):
|
266 |
-
# if exercise_needs in ['High', 'Very High']:
|
267 |
-
# bonus_score += 0.20
|
268 |
-
# bonus_reasons.append("Exercise needs match (+20%)")
|
269 |
-
# elif exercise_needs == 'Low':
|
270 |
-
# bonus_score -= 0.15
|
271 |
-
# bonus_reasons.append("Insufficient exercise level (-15%)")
|
272 |
-
# else:
|
273 |
-
# if exercise_needs == 'Moderate':
|
274 |
-
# bonus_score += 0.10
|
275 |
-
# bonus_reasons.append("Moderate exercise needs (+10%)")
|
276 |
-
|
277 |
-
# # 3. 美容需求評估
|
278 |
-
# grooming = breed_info.get('Grooming_Needs', '')
|
279 |
-
# if user_prefs.grooming_commitment == "high":
|
280 |
-
# if grooming == 'High':
|
281 |
-
# bonus_score += 0.10
|
282 |
-
# bonus_reasons.append("High grooming match (+10%)")
|
283 |
-
# else:
|
284 |
-
# if grooming == 'High':
|
285 |
-
# bonus_score -= 0.15
|
286 |
-
# bonus_reasons.append("High grooming needs (-15%)")
|
287 |
-
# elif grooming == 'Low':
|
288 |
-
# bonus_score += 0.10
|
289 |
-
# bonus_reasons.append("Low grooming needs (+10%)")
|
290 |
-
|
291 |
-
# # 4. 家庭適應性評估
|
292 |
-
# if user_prefs.has_children:
|
293 |
-
# if breed_info.get('Good_With_Children'):
|
294 |
-
# bonus_score += 0.15
|
295 |
-
# bonus_reasons.append("Excellent with children (+15%)")
|
296 |
-
# temperament = breed_info.get('Temperament', '').lower()
|
297 |
-
# if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
|
298 |
-
# bonus_score += 0.05
|
299 |
-
# bonus_reasons.append("Family-friendly temperament (+5%)")
|
300 |
-
|
301 |
-
# # 5. 噪音評估
|
302 |
-
# if user_prefs.noise_tolerance == "low":
|
303 |
-
# noise_level = breed_noise_info.get(breed_name, {}).get('noise_level', 'Unknown')
|
304 |
-
# if noise_level == 'High':
|
305 |
-
# bonus_score -= 0.10
|
306 |
-
# bonus_reasons.append("High noise level (-10%)")
|
307 |
-
# elif noise_level == 'Low':
|
308 |
-
# bonus_score += 0.10
|
309 |
-
# bonus_reasons.append("Low noise level (+10%)")
|
310 |
-
|
311 |
-
# # 6. 健康考慮
|
312 |
-
# if user_prefs.health_sensitivity == "high":
|
313 |
-
# health_score = smart_rec.get('health_score', 0.5)
|
314 |
-
# if health_score > 0.8:
|
315 |
-
# bonus_score += 0.10
|
316 |
-
# bonus_reasons.append("Excellent health score (+10%)")
|
317 |
-
# elif health_score < 0.5:
|
318 |
-
# bonus_score -= 0.10
|
319 |
-
# bonus_reasons.append("Health concerns (-10%)")
|
320 |
-
|
321 |
-
# # 7. 品種偏好獎勵
|
322 |
-
# if is_preferred:
|
323 |
-
# bonus_score += 0.15
|
324 |
-
# bonus_reasons.append("Directly mentioned breed (+15%)")
|
325 |
-
# elif similarity > 0.8:
|
326 |
-
# bonus_score += 0.10
|
327 |
-
# bonus_reasons.append("Very similar to preferred breed (+10%)")
|
328 |
-
|
329 |
-
# # 計算最終分數
|
330 |
-
# final_score = min(0.95, base_score + bonus_score)
|
331 |
-
|
332 |
-
# space_score = _calculate_space_compatibility(
|
333 |
-
# breed_info.get('Size', 'Medium'),
|
334 |
-
# user_prefs.living_space
|
335 |
-
# )
|
336 |
-
|
337 |
-
# exercise_score = _calculate_exercise_compatibility(
|
338 |
-
# breed_info.get('Exercise_Needs', 'Moderate'),
|
339 |
-
# user_prefs.exercise_time
|
340 |
-
# )
|
341 |
-
|
342 |
-
# grooming_score = _calculate_grooming_compatibility(
|
343 |
-
# breed_info.get('Grooming_Needs', 'Moderate'),
|
344 |
-
# user_prefs.grooming_commitment
|
345 |
-
# )
|
346 |
-
|
347 |
-
# experience_score = _calculate_experience_compatibility(
|
348 |
-
# breed_info.get('Care_Level', 'Moderate'),
|
349 |
-
# user_prefs.experience_level
|
350 |
-
# )
|
351 |
-
|
352 |
-
# scores = {
|
353 |
-
# 'overall': final_score,
|
354 |
-
# 'space': space_score,
|
355 |
-
# 'exercise': exercise_score,
|
356 |
-
# 'grooming': grooming_score,
|
357 |
-
# 'experience': experience_score,
|
358 |
-
# 'noise': smart_rec.get('scores', {}).get('noise', 0.0),
|
359 |
-
# 'health': smart_rec.get('health_score', 0.5),
|
360 |
-
# 'temperament': smart_rec.get('scores', {}).get('temperament', 0.0)
|
361 |
-
# }
|
362 |
-
|
363 |
-
|
364 |
-
# final_recommendations.append({
|
365 |
-
# 'rank': 0,
|
366 |
-
# 'breed': breed_name,
|
367 |
-
# 'scores': scores,
|
368 |
-
# 'base_score': round(base_score, 4),
|
369 |
-
# 'bonus_score': round(bonus_score, 4),
|
370 |
-
# 'final_score': round(final_score, 4),
|
371 |
-
# 'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
|
372 |
-
# 'info': breed_info,
|
373 |
-
# 'noise_info': breed_noise_info.get(breed_name, {}),
|
374 |
-
# 'health_info': breed_health_info.get(breed_name, {})
|
375 |
-
# })
|
376 |
-
|
377 |
-
# # 根據最終分數排序
|
378 |
-
# final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
|
379 |
-
|
380 |
-
# # 更新排名
|
381 |
-
# for i, rec in enumerate(final_recommendations, 1):
|
382 |
-
# rec['rank'] = i
|
383 |
-
|
384 |
-
# # 保存到歷史記錄
|
385 |
-
# history_results = [{
|
386 |
-
# 'breed': rec['breed'],
|
387 |
-
# 'rank': rec['rank'],
|
388 |
-
# 'final_score': rec['final_score']
|
389 |
-
# } for rec in final_recommendations[:10]]
|
390 |
-
|
391 |
-
# history_component.save_search(
|
392 |
-
# user_preferences=None,
|
393 |
-
# results=history_results,
|
394 |
-
# search_type="description",
|
395 |
-
# description=description
|
396 |
-
# )
|
397 |
-
|
398 |
-
# result = format_recommendation_html(final_recommendations, is_description_search=True)
|
399 |
-
# return [gr.update(value=result), gr.update(visible=False)]
|
400 |
-
|
401 |
-
# except Exception as e:
|
402 |
-
# error_msg = f"Error processing your description. Details: {str(e)}"
|
403 |
-
# return [gr.update(value=error_msg), gr.update(visible=False)]
|
404 |
-
|
405 |
-
|
406 |
-
def on_description_search(description: str):
|
407 |
-
try:
|
408 |
-
# 初始化匹配器
|
409 |
-
matcher = SmartBreedMatcher(dog_data)
|
410 |
-
breed_recommendations = matcher.match_user_preference(description, top_n=10)
|
411 |
-
|
412 |
-
# 從描述中提取用戶偏好
|
413 |
-
user_prefs = UserPreferences(
|
414 |
-
living_space="apartment" if any(word in description.lower()
|
415 |
-
for word in ["apartment", "flat", "condo"]) else "house_small",
|
416 |
-
yard_access="no_yard" if any(word in description.lower()
|
417 |
-
for word in ["apartment", "flat", "condo"]) else "private_yard",
|
418 |
-
exercise_time=120 if any(word in description.lower()
|
419 |
-
for word in ["active", "exercise", "running", "athletic", "high energy"]) else 60,
|
420 |
-
exercise_type="active_training" if any(word in description.lower()
|
421 |
-
for word in ["training", "running", "jogging", "hiking"]) else "moderate_activity",
|
422 |
-
grooming_commitment="high" if any(word in description.lower()
|
423 |
-
for word in ["grooming", "brush", "maintain"]) else "medium",
|
424 |
-
experience_level="experienced" if any(word in description.lower()
|
425 |
-
for word in ["experienced", "trained", "professional"]) else "intermediate",
|
426 |
-
time_availability="flexible" if any(word in description.lower()
|
427 |
-
for word in ["time", "available", "flexible", "home"]) else "moderate",
|
428 |
-
has_children=any(word in description.lower()
|
429 |
-
for word in ["children", "kids", "family", "child"]),
|
430 |
-
children_age="school_age" if any(word in description.lower()
|
431 |
-
for word in ["school", "elementary"]) else "teenager" if any(word in description.lower()
|
432 |
-
for word in ["teen", "teenager"]) else "toddler" if any(word in description.lower()
|
433 |
-
for word in ["baby", "toddler"]) else None,
|
434 |
-
noise_tolerance="low" if any(word in description.lower()
|
435 |
-
for word in ["quiet", "peaceful", "silent"]) else "medium",
|
436 |
-
space_for_play=any(word in description.lower()
|
437 |
-
for word in ["yard", "garden", "outdoor", "space"]),
|
438 |
-
other_pets=any(word in description.lower()
|
439 |
-
for word in ["other pets", "cats", "dogs"]),
|
440 |
-
climate="moderate",
|
441 |
-
health_sensitivity="high" if any(word in description.lower()
|
442 |
-
for word in ["health", "medical", "sensitive"]) else "medium",
|
443 |
-
barking_acceptance="low" if any(word in description.lower()
|
444 |
-
for word in ["quiet", "no barking"]) else "medium"
|
445 |
-
)
|
446 |
-
|
447 |
-
final_recommendations = []
|
448 |
-
|
449 |
-
if not breed_recommendations:
|
450 |
-
print("No direct matches found, applying fallback logic")
|
451 |
-
# 使用 criteria 搜索的邏輯作為後備
|
452 |
-
recommendations = get_breed_recommendations(user_prefs, top_n=10)
|
453 |
-
if recommendations:
|
454 |
-
final_recommendations.extend(recommendations)
|
455 |
-
else:
|
456 |
-
# 保持原有的詳細評分系統
|
457 |
-
for smart_rec in breed_recommendations:
|
458 |
-
breed_name = smart_rec['breed']
|
459 |
-
breed_info = get_dog_description(breed_name)
|
460 |
-
|
461 |
-
if not isinstance(breed_info, dict):
|
462 |
-
continue
|
463 |
-
|
464 |
-
# 獲取基礎分數
|
465 |
-
base_score = smart_rec.get('base_score', 0.7)
|
466 |
-
similarity = smart_rec.get('similarity', 0)
|
467 |
-
is_preferred = smart_rec.get('is_preferred', False)
|
468 |
-
|
469 |
-
bonus_reasons = []
|
470 |
-
bonus_score = 0
|
471 |
-
|
472 |
-
# 1. 尺寸評估
|
473 |
-
size = breed_info.get('Size', '')
|
474 |
-
if size in ['Small', 'Tiny']:
|
475 |
-
if "apartment" in description.lower():
|
476 |
-
bonus_score += 0.05
|
477 |
-
bonus_reasons.append("Suitable size for apartment (+5%)")
|
478 |
-
else:
|
479 |
-
bonus_score -= 0.25
|
480 |
-
bonus_reasons.append("Size too small (-25%)")
|
481 |
-
elif size == 'Medium':
|
482 |
-
bonus_score += 0.15
|
483 |
-
bonus_reasons.append("Ideal size (+15%)")
|
484 |
-
elif size == 'Large':
|
485 |
-
if "apartment" in description.lower():
|
486 |
-
bonus_score -= 0.05
|
487 |
-
bonus_reasons.append("May be too large for apartment (-5%)")
|
488 |
-
elif size == 'Giant':
|
489 |
-
bonus_score -= 0.20
|
490 |
-
bonus_reasons.append("Size too large (-20%)")
|
491 |
-
|
492 |
-
# 2. 運動需求評估
|
493 |
-
exercise_needs = breed_info.get('Exercise_Needs', '')
|
494 |
-
if any(word in description.lower() for word in ['active', 'energetic', 'running']):
|
495 |
-
if exercise_needs in ['High', 'Very High']:
|
496 |
-
bonus_score += 0.20
|
497 |
-
bonus_reasons.append("Exercise needs match (+20%)")
|
498 |
-
elif exercise_needs == 'Low':
|
499 |
-
bonus_score -= 0.15
|
500 |
-
bonus_reasons.append("Insufficient exercise level (-15%)")
|
501 |
-
else:
|
502 |
-
if exercise_needs == 'Moderate':
|
503 |
-
bonus_score += 0.10
|
504 |
-
bonus_reasons.append("Moderate exercise needs (+10%)")
|
505 |
-
|
506 |
-
# 3. 美容需求評估
|
507 |
-
grooming = breed_info.get('Grooming_Needs', '')
|
508 |
-
if user_prefs.grooming_commitment == "high":
|
509 |
-
if grooming == 'High':
|
510 |
-
bonus_score += 0.10
|
511 |
-
bonus_reasons.append("High grooming match (+10%)")
|
512 |
-
else:
|
513 |
-
if grooming == 'High':
|
514 |
-
bonus_score -= 0.15
|
515 |
-
bonus_reasons.append("High grooming needs (-15%)")
|
516 |
-
elif grooming == 'Low':
|
517 |
-
bonus_score += 0.10
|
518 |
-
bonus_reasons.append("Low grooming needs (+10%)")
|
519 |
-
|
520 |
-
# 4. 家庭適應性評估
|
521 |
-
if user_prefs.has_children:
|
522 |
-
if breed_info.get('Good_With_Children'):
|
523 |
-
bonus_score += 0.15
|
524 |
-
bonus_reasons.append("Excellent with children (+15%)")
|
525 |
-
temperament = breed_info.get('Temperament', '').lower()
|
526 |
-
if any(trait in temperament for trait in ['gentle', 'patient', 'friendly']):
|
527 |
-
bonus_score += 0.05
|
528 |
-
bonus_reasons.append("Family-friendly temperament (+5%)")
|
529 |
-
|
530 |
-
# 5. 噪音評估
|
531 |
-
if user_prefs.noise_tolerance == "low":
|
532 |
-
noise_level = breed_noise_info.get(breed_name, {}).get('noise_level', 'Unknown')
|
533 |
-
if noise_level == 'High':
|
534 |
-
bonus_score -= 0.10
|
535 |
-
bonus_reasons.append("High noise level (-10%)")
|
536 |
-
elif noise_level == 'Low':
|
537 |
-
bonus_score += 0.10
|
538 |
-
bonus_reasons.append("Low noise level (+10%)")
|
539 |
-
|
540 |
-
# 6. 健康考慮
|
541 |
-
if user_prefs.health_sensitivity == "high":
|
542 |
-
health_score = smart_rec.get('health_score', 0.5)
|
543 |
-
if health_score > 0.8:
|
544 |
-
bonus_score += 0.10
|
545 |
-
bonus_reasons.append("Excellent health score (+10%)")
|
546 |
-
elif health_score < 0.5:
|
547 |
-
bonus_score -= 0.10
|
548 |
-
bonus_reasons.append("Health concerns (-10%)")
|
549 |
-
|
550 |
-
# 7. 品種偏好獎勵
|
551 |
-
if is_preferred:
|
552 |
-
bonus_score += 0.15
|
553 |
-
bonus_reasons.append("Directly mentioned breed (+15%)")
|
554 |
-
elif similarity > 0.8:
|
555 |
-
bonus_score += 0.10
|
556 |
-
bonus_reasons.append("Very similar to preferred breed (+10%)")
|
557 |
-
|
558 |
-
# 計算最終分數
|
559 |
-
final_score = min(0.95, base_score + bonus_score)
|
560 |
-
|
561 |
-
scores = {
|
562 |
-
'overall': final_score,
|
563 |
-
'space': _calculate_space_compatibility(
|
564 |
-
breed_info.get('Size', 'Medium'),
|
565 |
-
user_prefs.living_space
|
566 |
-
),
|
567 |
-
'exercise': _calculate_exercise_compatibility(
|
568 |
-
breed_info.get('Exercise_Needs', 'Moderate'),
|
569 |
-
user_prefs.exercise_time
|
570 |
-
),
|
571 |
-
'grooming': _calculate_grooming_compatibility(
|
572 |
-
breed_info.get('Grooming_Needs', 'Moderate'),
|
573 |
-
user_prefs.grooming_commitment
|
574 |
-
),
|
575 |
-
'experience': _calculate_experience_compatibility(
|
576 |
-
breed_info.get('Care_Level', 'Moderate'),
|
577 |
-
user_prefs.experience_level
|
578 |
-
),
|
579 |
-
'noise': smart_rec.get('scores', {}).get('noise', 0.0),
|
580 |
-
'health': smart_rec.get('health_score', 0.5),
|
581 |
-
'temperament': smart_rec.get('scores', {}).get('temperament', 0.0)
|
582 |
-
}
|
583 |
-
|
584 |
-
final_recommendations.append({
|
585 |
-
'rank': 0,
|
586 |
-
'breed': breed_name,
|
587 |
-
'scores': scores,
|
588 |
-
'base_score': round(base_score, 4),
|
589 |
-
'bonus_score': round(bonus_score, 4),
|
590 |
-
'final_score': round(final_score, 4),
|
591 |
-
'match_reason': ' • '.join(bonus_reasons) if bonus_reasons else "Standard match",
|
592 |
-
'info': breed_info,
|
593 |
-
'noise_info': breed_noise_info.get(breed_name, {}),
|
594 |
-
'health_info': breed_health_info.get(breed_name, {})
|
595 |
-
})
|
596 |
-
|
597 |
-
# 排序並更新排名
|
598 |
-
if final_recommendations:
|
599 |
-
final_recommendations.sort(key=lambda x: (-x['final_score'], x['breed']))
|
600 |
-
for i, rec in enumerate(final_recommendations, 1):
|
601 |
-
rec['rank'] = i
|
602 |
-
|
603 |
-
# 保存搜索歷史
|
604 |
-
history_results = [{
|
605 |
-
'breed': rec['breed'],
|
606 |
-
'rank': rec['rank'],
|
607 |
-
'overall_score': rec['final_score'],
|
608 |
-
'base_score': rec['base_score'],
|
609 |
-
'bonus_score': rec['bonus_score'],
|
610 |
-
'scores': rec['scores']
|
611 |
-
} for rec in final_recommendations[:10]]
|
612 |
-
|
613 |
-
# 保存到歷史記錄
|
614 |
-
history_component.save_search(
|
615 |
-
user_preferences={'description': description},
|
616 |
-
results=history_results,
|
617 |
-
search_type="description"
|
618 |
-
)
|
619 |
-
|
620 |
-
# 返回結果
|
621 |
-
result = format_recommendation_html(final_recommendations, is_description_search=True)
|
622 |
-
return result
|
623 |
-
|
624 |
-
return "No matching breeds found. Please try a different description."
|
625 |
-
|
626 |
-
except Exception as e:
|
627 |
-
print(f"Error in description search: {str(e)}")
|
628 |
-
import traceback
|
629 |
-
print(traceback.format_exc())
|
630 |
-
return "Error processing your description"
|
631 |
-
|
632 |
-
|
633 |
-
def _calculate_space_compatibility(size: str, living_space: str) -> float:
|
634 |
-
"""住宿空間適應性評分"""
|
635 |
-
if living_space == "apartment":
|
636 |
-
scores = {
|
637 |
-
'Tiny': 0.6,
|
638 |
-
'Small': 0.8,
|
639 |
-
'Medium': 1.0,
|
640 |
-
'Medium-Large': 0.6,
|
641 |
-
'Large': 0.4,
|
642 |
-
'Giant': 0.2
|
643 |
-
}
|
644 |
-
else: # house
|
645 |
-
scores = {
|
646 |
-
'Tiny': 0.4,
|
647 |
-
'Small': 0.6,
|
648 |
-
'Medium': 0.8,
|
649 |
-
'Medium-Large': 1.0,
|
650 |
-
'Large': 0.9,
|
651 |
-
'Giant': 0.7
|
652 |
-
}
|
653 |
-
return scores.get(size, 0.5)
|
654 |
-
|
655 |
-
def _calculate_exercise_compatibility(exercise_needs: str, exercise_time: int) -> float:
|
656 |
-
"""運動需求相容性評分"""
|
657 |
-
# 轉換運動時間到評分標準
|
658 |
-
if exercise_time >= 120: # 高運動量
|
659 |
-
scores = {
|
660 |
-
'Very High': 1.0,
|
661 |
-
'High': 0.8,
|
662 |
-
'Moderate': 0.5,
|
663 |
-
'Low': 0.2
|
664 |
-
}
|
665 |
-
elif exercise_time >= 60: # 中等運動量
|
666 |
-
scores = {
|
667 |
-
'Very High': 0.5,
|
668 |
-
'High': 0.7,
|
669 |
-
'Moderate': 1.0,
|
670 |
-
'Low': 0.8
|
671 |
-
}
|
672 |
-
else: # 低運動量
|
673 |
-
scores = {
|
674 |
-
'Very High': 0.2,
|
675 |
-
'High': 0.4,
|
676 |
-
'Moderate': 0.7,
|
677 |
-
'Low': 1.0
|
678 |
-
}
|
679 |
-
return scores.get(exercise_needs, 0.5)
|
680 |
-
|
681 |
-
def _calculate_grooming_compatibility(grooming_needs: str, grooming_commitment: str) -> float:
|
682 |
-
"""美容需求相容性評分"""
|
683 |
-
if grooming_commitment == "high":
|
684 |
-
scores = {
|
685 |
-
'High': 1.0,
|
686 |
-
'Moderate': 0.8,
|
687 |
-
'Low': 0.5
|
688 |
-
}
|
689 |
-
elif grooming_commitment == "medium":
|
690 |
-
scores = {
|
691 |
-
'High': 0.6,
|
692 |
-
'Moderate': 1.0,
|
693 |
-
'Low': 0.8
|
694 |
-
}
|
695 |
-
else: # low
|
696 |
-
scores = {
|
697 |
-
'High': 0.3,
|
698 |
-
'Moderate': 0.6,
|
699 |
-
'Low': 1.0
|
700 |
-
}
|
701 |
-
return scores.get(grooming_needs, 0.5)
|
702 |
-
|
703 |
-
def _calculate_experience_compatibility(care_level: str, experience_level: str) -> float:
|
704 |
-
if experience_level == "experienced":
|
705 |
-
care_scores = {
|
706 |
-
'High': 1.0,
|
707 |
-
'Moderate': 0.8,
|
708 |
-
'Low': 0.6
|
709 |
-
}
|
710 |
-
elif experience_level == "intermediate":
|
711 |
-
care_scores = {
|
712 |
-
'High': 0.6,
|
713 |
-
'Moderate': 1.0,
|
714 |
-
'Low': 0.8
|
715 |
-
}
|
716 |
-
else: # beginner
|
717 |
-
care_scores = {
|
718 |
-
'High': 0.3,
|
719 |
-
'Moderate': 0.7,
|
720 |
-
'Low': 1.0
|
721 |
-
}
|
722 |
-
return care_scores.get(care_level, 0.7)
|
723 |
-
|
724 |
-
def show_loading():
|
725 |
-
return [gr.update(value=""), gr.update(visible=True)]
|
726 |
-
|
727 |
|
728 |
get_recommendations_btn.click(
|
729 |
fn=on_find_match_click,
|
@@ -742,15 +195,6 @@ def create_recommendation_tab(UserPreferences, get_breed_recommendations, format
|
|
742 |
outputs=recommendation_output
|
743 |
)
|
744 |
|
745 |
-
description_search_btn.click(
|
746 |
-
fn=show_loading, # 先顯示加載消息
|
747 |
-
outputs=[description_output, loading_msg]
|
748 |
-
).then( # 然後執行搜索
|
749 |
-
fn=on_description_search,
|
750 |
-
inputs=[description_input],
|
751 |
-
outputs=[description_output, loading_msg]
|
752 |
-
)
|
753 |
-
|
754 |
return {
|
755 |
'living_space': living_space,
|
756 |
'exercise_time': exercise_time,
|
@@ -760,7 +204,4 @@ def create_recommendation_tab(UserPreferences, get_breed_recommendations, format
|
|
760 |
'noise_tolerance': noise_tolerance,
|
761 |
'get_recommendations_btn': get_recommendations_btn,
|
762 |
'recommendation_output': recommendation_output,
|
763 |
-
|
764 |
-
'description_search_btn': description_search_btn,
|
765 |
-
'description_output': description_output
|
766 |
-
}
|
|
|
122 |
get_recommendations_btn = gr.Button("Find My Perfect Match! 🔍", variant="primary")
|
123 |
recommendation_output = gr.HTML(label="Breed Recommendations")
|
124 |
|
|
|
|
|
|
|
|
|
125 |
def on_find_match_click(*args):
|
126 |
try:
|
127 |
user_prefs = UserPreferences(
|
|
|
177 |
import traceback
|
178 |
print(traceback.format_exc())
|
179 |
return "Error getting recommendations"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
181 |
get_recommendations_btn.click(
|
182 |
fn=on_find_match_click,
|
|
|
195 |
outputs=recommendation_output
|
196 |
)
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
return {
|
199 |
'living_space': living_space,
|
200 |
'exercise_time': exercise_time,
|
|
|
204 |
'noise_tolerance': noise_tolerance,
|
205 |
'get_recommendations_btn': get_recommendations_btn,
|
206 |
'recommendation_output': recommendation_output,
|
207 |
+
}
|
|
|
|
|
|