Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import torch
|
|
4 |
import torch.nn as nn
|
5 |
import gradio as gr
|
6 |
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
|
|
|
7 |
import torch.nn.functional as F
|
8 |
from torchvision import transforms
|
9 |
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
@@ -163,17 +164,138 @@ def _predict_single_dog(image):
|
|
163 |
return top1_prob, topk_breeds, topk_probs_percent
|
164 |
|
165 |
|
166 |
-
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
168 |
dogs = []
|
|
|
|
|
|
|
169 |
for box in results.boxes:
|
170 |
-
if box.cls == 16: # COCO
|
171 |
xyxy = box.xyxy[0].tolist()
|
172 |
confidence = box.conf.item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
174 |
dogs.append((cropped_image, confidence, xyxy))
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
async def predict(image):
|
179 |
if image is None:
|
@@ -183,12 +305,15 @@ async def predict(image):
|
|
183 |
if isinstance(image, np.ndarray):
|
184 |
image = Image.fromarray(image)
|
185 |
|
186 |
-
dogs = await detect_multiple_dogs(image, conf_threshold=0.
|
187 |
|
188 |
-
if len(dogs)
|
189 |
-
return
|
|
|
|
|
|
|
190 |
|
191 |
-
#
|
192 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
193 |
explanations = []
|
194 |
buttons = []
|
@@ -196,7 +321,7 @@ async def predict(image):
|
|
196 |
draw = ImageDraw.Draw(annotated_image)
|
197 |
font = ImageFont.load_default()
|
198 |
|
199 |
-
for i, (cropped_image,
|
200 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
201 |
color = color_list[i % len(color_list)]
|
202 |
draw.rectangle(box, outline=color, width=3)
|
@@ -239,7 +364,7 @@ async def predict(image):
|
|
239 |
|
240 |
except Exception as e:
|
241 |
error_msg = f"An error occurred: {str(e)}"
|
242 |
-
print(error_msg) #
|
243 |
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
244 |
|
245 |
|
|
|
4 |
import torch.nn as nn
|
5 |
import gradio as gr
|
6 |
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
|
7 |
+
from torchvision.ops import nms
|
8 |
import torch.nn.functional as F
|
9 |
from torchvision import transforms
|
10 |
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
|
|
164 |
return top1_prob, topk_breeds, topk_probs_percent
|
165 |
|
166 |
|
167 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
168 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
169 |
+
# dogs = []
|
170 |
+
# for box in results.boxes:
|
171 |
+
# if box.cls == 16: # COCO 資料集中狗的類別是 16
|
172 |
+
# xyxy = box.xyxy[0].tolist()
|
173 |
+
# confidence = box.conf.item()
|
174 |
+
# cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
175 |
+
# dogs.append((cropped_image, confidence, xyxy))
|
176 |
+
# return dogs
|
177 |
+
|
178 |
+
|
179 |
+
# async def predict(image):
|
180 |
+
# if image is None:
|
181 |
+
# return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
182 |
+
|
183 |
+
# try:
|
184 |
+
# if isinstance(image, np.ndarray):
|
185 |
+
# image = Image.fromarray(image)
|
186 |
+
|
187 |
+
# dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
|
188 |
+
|
189 |
+
# if len(dogs) <= 1:
|
190 |
+
# return await process_single_dog(image)
|
191 |
+
|
192 |
+
# # 多狗情境
|
193 |
+
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
194 |
+
# explanations = []
|
195 |
+
# buttons = []
|
196 |
+
# annotated_image = image.copy()
|
197 |
+
# draw = ImageDraw.Draw(annotated_image)
|
198 |
+
# font = ImageFont.load_default()
|
199 |
+
|
200 |
+
# for i, (cropped_image, _, box) in enumerate(dogs):
|
201 |
+
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
202 |
+
# color = color_list[i % len(color_list)]
|
203 |
+
# draw.rectangle(box, outline=color, width=3)
|
204 |
+
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
205 |
+
|
206 |
+
# breed = topk_breeds[0]
|
207 |
+
# if top1_prob >= 0.5:
|
208 |
+
# description = get_dog_description(breed)
|
209 |
+
# formatted_description = format_description(description, breed)
|
210 |
+
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
211 |
+
# elif top1_prob >= 0.2:
|
212 |
+
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
213 |
+
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
214 |
+
# explanations.append(dog_explanation)
|
215 |
+
# buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
216 |
+
# else:
|
217 |
+
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
218 |
+
|
219 |
+
# final_explanation = "\n\n".join(explanations)
|
220 |
+
# if buttons:
|
221 |
+
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
222 |
+
# initial_state = {
|
223 |
+
# "explanation": final_explanation,
|
224 |
+
# "buttons": buttons,
|
225 |
+
# "show_back": True
|
226 |
+
# }
|
227 |
+
# return (final_explanation, annotated_image,
|
228 |
+
# buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
229 |
+
# buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
230 |
+
# buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
231 |
+
# gr.update(visible=True),
|
232 |
+
# initial_state)
|
233 |
+
# else:
|
234 |
+
# initial_state = {
|
235 |
+
# "explanation": final_explanation,
|
236 |
+
# "buttons": [],
|
237 |
+
# "show_back": False
|
238 |
+
# }
|
239 |
+
# return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
240 |
+
|
241 |
+
# except Exception as e:
|
242 |
+
# error_msg = f"An error occurred: {str(e)}"
|
243 |
+
# print(error_msg) # 添加日誌輸出
|
244 |
+
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
245 |
+
|
246 |
+
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.3):
|
247 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
248 |
dogs = []
|
249 |
+
boxes = []
|
250 |
+
confidences = []
|
251 |
+
|
252 |
for box in results.boxes:
|
253 |
+
if box.cls == 16: # COCO dataset class for dog is 16
|
254 |
xyxy = box.xyxy[0].tolist()
|
255 |
confidence = box.conf.item()
|
256 |
+
boxes.append(torch.tensor(xyxy))
|
257 |
+
confidences.append(confidence)
|
258 |
+
|
259 |
+
if boxes:
|
260 |
+
boxes = torch.stack(boxes)
|
261 |
+
confidences = torch.tensor(confidences)
|
262 |
+
|
263 |
+
# Apply NMS
|
264 |
+
keep = nms(boxes, confidences, iou_threshold)
|
265 |
+
|
266 |
+
for i in keep:
|
267 |
+
xyxy = boxes[i].tolist()
|
268 |
+
confidence = confidences[i].item()
|
269 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
270 |
dogs.append((cropped_image, confidence, xyxy))
|
271 |
+
|
272 |
+
# Merge nearby boxes
|
273 |
+
merged_dogs = []
|
274 |
+
while dogs:
|
275 |
+
base_dog = dogs.pop(0)
|
276 |
+
base_box = torch.tensor(base_dog[2])
|
277 |
+
to_merge = [base_dog]
|
278 |
+
|
279 |
+
i = 0
|
280 |
+
while i < len(dogs):
|
281 |
+
compare_box = torch.tensor(dogs[i][2])
|
282 |
+
iou = box_iou(base_box.unsqueeze(0), compare_box.unsqueeze(0)).item()
|
283 |
+
if iou > merge_threshold:
|
284 |
+
to_merge.append(dogs.pop(i))
|
285 |
+
else:
|
286 |
+
i += 1
|
287 |
+
|
288 |
+
if len(to_merge) == 1:
|
289 |
+
merged_dogs.append(base_dog)
|
290 |
+
else:
|
291 |
+
merged_box = torch.cat([torch.tensor(dog[2]).unsqueeze(0) for dog in to_merge]).mean(0)
|
292 |
+
merged_confidence = max(dog[1] for dog in to_merge)
|
293 |
+
merged_image = image.crop(merged_box.tolist())
|
294 |
+
merged_dogs.append((merged_image, merged_confidence, merged_box.tolist()))
|
295 |
+
|
296 |
+
return merged_dogs
|
297 |
+
|
298 |
+
return []
|
299 |
|
300 |
async def predict(image):
|
301 |
if image is None:
|
|
|
305 |
if isinstance(image, np.ndarray):
|
306 |
image = Image.fromarray(image)
|
307 |
|
308 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.3)
|
309 |
|
310 |
+
if len(dogs) == 0:
|
311 |
+
return "No dogs detected in the image.", image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
312 |
+
|
313 |
+
if len(dogs) == 1:
|
314 |
+
return await process_single_dog(dogs[0][0]) # Pass the cropped image of the single detected dog
|
315 |
|
316 |
+
# Multi-dog scenario
|
317 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
318 |
explanations = []
|
319 |
buttons = []
|
|
|
321 |
draw = ImageDraw.Draw(annotated_image)
|
322 |
font = ImageFont.load_default()
|
323 |
|
324 |
+
for i, (cropped_image, confidence, box) in enumerate(dogs):
|
325 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
326 |
color = color_list[i % len(color_list)]
|
327 |
draw.rectangle(box, outline=color, width=3)
|
|
|
364 |
|
365 |
except Exception as e:
|
366 |
error_msg = f"An error occurred: {str(e)}"
|
367 |
+
print(error_msg) # Add log output
|
368 |
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
369 |
|
370 |
|