Spaces:
Running
on
Zero
Running
on
Zero
Delete app.py
Browse files
app.py
DELETED
@@ -1,829 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import gradio as gr
|
6 |
-
from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
|
7 |
-
from torchvision.ops import nms, box_iou
|
8 |
-
import torch.nn.functional as F
|
9 |
-
from torchvision import transforms
|
10 |
-
from PIL import Image, ImageDraw, ImageFont, ImageFilter
|
11 |
-
from data_manager import get_dog_description, UserPreferences, get_breed_recommendations, format_recommendation_html
|
12 |
-
from history_manager import UserHistoryManager
|
13 |
-
from search_history import create_history_tab, create_history_component
|
14 |
-
from styles import get_css_styles
|
15 |
-
from breed_detection import create_detection_tab
|
16 |
-
from breed_comparison import create_comparison_tab
|
17 |
-
from breed_recommendation import create_recommendation_tab
|
18 |
-
from urllib.parse import quote
|
19 |
-
from ultralytics import YOLO
|
20 |
-
import asyncio
|
21 |
-
import traceback
|
22 |
-
|
23 |
-
|
24 |
-
model_yolo = YOLO('yolov8l.pt')
|
25 |
-
|
26 |
-
history_manager = UserHistoryManager()
|
27 |
-
|
28 |
-
dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
|
29 |
-
"Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog",
|
30 |
-
"Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
|
31 |
-
"Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
|
32 |
-
"Chihuahua", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
|
33 |
-
"English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
|
34 |
-
"German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
|
35 |
-
"Greater_Swiss_Mountain_Dog", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
|
36 |
-
"Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
|
37 |
-
"Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
|
38 |
-
"Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
|
39 |
-
"Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
|
40 |
-
"Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
|
41 |
-
"Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog",
|
42 |
-
"Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
|
43 |
-
"Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
|
44 |
-
"Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
|
45 |
-
"Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
|
46 |
-
"Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
|
47 |
-
"Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
|
48 |
-
"Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
|
49 |
-
"Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
|
50 |
-
"Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
|
51 |
-
"Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
|
52 |
-
"Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
|
53 |
-
"Wire-Haired_Fox_Terrier"]
|
54 |
-
|
55 |
-
class MultiHeadAttention(nn.Module):
|
56 |
-
|
57 |
-
def __init__(self, in_dim, num_heads=8):
|
58 |
-
super().__init__()
|
59 |
-
self.num_heads = num_heads
|
60 |
-
self.head_dim = max(1, in_dim // num_heads)
|
61 |
-
self.scaled_dim = self.head_dim * num_heads
|
62 |
-
self.fc_in = nn.Linear(in_dim, self.scaled_dim)
|
63 |
-
self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
|
64 |
-
self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
|
65 |
-
self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
|
66 |
-
self.fc_out = nn.Linear(self.scaled_dim, in_dim)
|
67 |
-
|
68 |
-
def forward(self, x):
|
69 |
-
N = x.shape[0]
|
70 |
-
x = self.fc_in(x)
|
71 |
-
q = self.query(x).view(N, self.num_heads, self.head_dim)
|
72 |
-
k = self.key(x).view(N, self.num_heads, self.head_dim)
|
73 |
-
v = self.value(x).view(N, self.num_heads, self.head_dim)
|
74 |
-
|
75 |
-
energy = torch.einsum("nqd,nkd->nqk", [q, k])
|
76 |
-
attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
|
77 |
-
|
78 |
-
out = torch.einsum("nqk,nvd->nqd", [attention, v])
|
79 |
-
out = out.reshape(N, self.scaled_dim)
|
80 |
-
out = self.fc_out(out)
|
81 |
-
return out
|
82 |
-
|
83 |
-
class BaseModel(nn.Module):
|
84 |
-
def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
85 |
-
super().__init__()
|
86 |
-
self.device = device
|
87 |
-
self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
|
88 |
-
self.feature_dim = self.backbone.classifier[1].in_features
|
89 |
-
self.backbone.classifier = nn.Identity()
|
90 |
-
|
91 |
-
self.num_heads = max(1, min(8, self.feature_dim // 64))
|
92 |
-
self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
|
93 |
-
|
94 |
-
self.classifier = nn.Sequential(
|
95 |
-
nn.LayerNorm(self.feature_dim),
|
96 |
-
nn.Dropout(0.3),
|
97 |
-
nn.Linear(self.feature_dim, num_classes)
|
98 |
-
)
|
99 |
-
|
100 |
-
self.to(device)
|
101 |
-
|
102 |
-
def forward(self, x):
|
103 |
-
x = x.to(self.device)
|
104 |
-
features = self.backbone(x)
|
105 |
-
attended_features = self.attention(features)
|
106 |
-
logits = self.classifier(attended_features)
|
107 |
-
return logits, attended_features
|
108 |
-
|
109 |
-
|
110 |
-
num_classes = 120
|
111 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
112 |
-
model = BaseModel(num_classes=num_classes, device=device)
|
113 |
-
|
114 |
-
checkpoint = torch.load('best_model_81_dog.pth', map_location=torch.device('cpu'))
|
115 |
-
model.load_state_dict(checkpoint['model_state_dict'])
|
116 |
-
|
117 |
-
# evaluation mode
|
118 |
-
model.eval()
|
119 |
-
|
120 |
-
# Image preprocessing function
|
121 |
-
def preprocess_image(image):
|
122 |
-
# If the image is numpy.ndarray turn into PIL.Image
|
123 |
-
if isinstance(image, np.ndarray):
|
124 |
-
image = Image.fromarray(image)
|
125 |
-
|
126 |
-
# Use torchvision.transforms to process images
|
127 |
-
transform = transforms.Compose([
|
128 |
-
transforms.Resize((224, 224)),
|
129 |
-
transforms.ToTensor(),
|
130 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
131 |
-
])
|
132 |
-
|
133 |
-
return transform(image).unsqueeze(0)
|
134 |
-
|
135 |
-
|
136 |
-
def get_akc_breeds_link(breed: str) -> str:
|
137 |
-
"""Generate AKC breed page URL with intelligent name handling"""
|
138 |
-
# 基本的字符串處理
|
139 |
-
breed_name = breed.lower()
|
140 |
-
|
141 |
-
# 處理常見的名稱格式
|
142 |
-
breed_name = breed_name.replace('_', '-')
|
143 |
-
breed_name = breed_name.replace("'", '')
|
144 |
-
breed_name = breed_name.replace(" ", '-')
|
145 |
-
|
146 |
-
# 處理特殊情況
|
147 |
-
special_cases = {
|
148 |
-
'mexican-hairless': 'xoloitzcuintli',
|
149 |
-
'brabancon-griffon': 'brussels-griffon',
|
150 |
-
'bull-mastiff': 'bullmastiff',
|
151 |
-
'walker-hound': 'treeing-walker-coonhound'
|
152 |
-
}
|
153 |
-
|
154 |
-
breed_name = special_cases.get(breed_name, breed_name)
|
155 |
-
return f"https://www.akc.org/dog-breeds/{breed_name}/"
|
156 |
-
|
157 |
-
|
158 |
-
async def predict_single_dog(image):
|
159 |
-
image_tensor = preprocess_image(image)
|
160 |
-
with torch.no_grad():
|
161 |
-
output = model(image_tensor)
|
162 |
-
logits = output[0] if isinstance(output, tuple) else output
|
163 |
-
probabilities = F.softmax(logits, dim=1)
|
164 |
-
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
165 |
-
top1_prob = topk_probs[0][0].item()
|
166 |
-
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
167 |
-
|
168 |
-
# Calculate relative probabilities for display
|
169 |
-
raw_probs = [prob.item() for prob in topk_probs[0]]
|
170 |
-
sum_probs = sum(raw_probs)
|
171 |
-
relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in raw_probs]
|
172 |
-
|
173 |
-
return top1_prob, topk_breeds, relative_probs
|
174 |
-
|
175 |
-
|
176 |
-
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
|
177 |
-
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
178 |
-
dogs = []
|
179 |
-
boxes = []
|
180 |
-
for box in results.boxes:
|
181 |
-
if box.cls == 16: # COCO dataset class for dog is 16
|
182 |
-
xyxy = box.xyxy[0].tolist()
|
183 |
-
confidence = box.conf.item()
|
184 |
-
boxes.append((xyxy, confidence))
|
185 |
-
|
186 |
-
if not boxes:
|
187 |
-
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
188 |
-
else:
|
189 |
-
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
190 |
-
|
191 |
-
for box, confidence in nms_boxes:
|
192 |
-
x1, y1, x2, y2 = box
|
193 |
-
w, h = x2 - x1, y2 - y1
|
194 |
-
x1 = max(0, x1 - w * 0.05)
|
195 |
-
y1 = max(0, y1 - h * 0.05)
|
196 |
-
x2 = min(image.width, x2 + w * 0.05)
|
197 |
-
y2 = min(image.height, y2 + h * 0.05)
|
198 |
-
cropped_image = image.crop((x1, y1, x2, y2))
|
199 |
-
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
200 |
-
|
201 |
-
return dogs
|
202 |
-
|
203 |
-
|
204 |
-
def non_max_suppression(boxes, iou_threshold):
|
205 |
-
keep = []
|
206 |
-
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
207 |
-
while boxes:
|
208 |
-
current = boxes.pop(0)
|
209 |
-
keep.append(current)
|
210 |
-
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
211 |
-
return keep
|
212 |
-
|
213 |
-
|
214 |
-
def calculate_iou(box1, box2):
|
215 |
-
x1 = max(box1[0], box2[0])
|
216 |
-
y1 = max(box1[1], box2[1])
|
217 |
-
x2 = min(box1[2], box2[2])
|
218 |
-
y2 = min(box1[3], box2[3])
|
219 |
-
|
220 |
-
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
221 |
-
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
222 |
-
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
223 |
-
|
224 |
-
iou = intersection / float(area1 + area2 - intersection)
|
225 |
-
return iou
|
226 |
-
|
227 |
-
|
228 |
-
async def process_single_dog(image):
|
229 |
-
top1_prob, topk_breeds, relative_probs = await predict_single_dog(image)
|
230 |
-
|
231 |
-
# Case 1: Low confidence - unclear image or breed not in dataset
|
232 |
-
if top1_prob < 0.2:
|
233 |
-
error_message = '''
|
234 |
-
<div class="dog-info-card">
|
235 |
-
<div class="breed-info">
|
236 |
-
<p class="warning-message">
|
237 |
-
<span class="icon">⚠️</span>
|
238 |
-
The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.
|
239 |
-
</p>
|
240 |
-
</div>
|
241 |
-
</div>
|
242 |
-
'''
|
243 |
-
initial_state = {
|
244 |
-
"explanation": error_message,
|
245 |
-
"image": None,
|
246 |
-
"is_multi_dog": False
|
247 |
-
}
|
248 |
-
return error_message, None, initial_state
|
249 |
-
|
250 |
-
breed = topk_breeds[0]
|
251 |
-
|
252 |
-
# Case 2: High confidence - single breed result
|
253 |
-
if top1_prob >= 0.45:
|
254 |
-
description = get_dog_description(breed)
|
255 |
-
formatted_description = format_description_html(description, breed) # 使用 format_description_html
|
256 |
-
html_content = f'''
|
257 |
-
<div class="dog-info-card">
|
258 |
-
<div class="breed-info">
|
259 |
-
{formatted_description}
|
260 |
-
</div>
|
261 |
-
</div>
|
262 |
-
'''
|
263 |
-
initial_state = {
|
264 |
-
"explanation": html_content,
|
265 |
-
"image": image,
|
266 |
-
"is_multi_dog": False
|
267 |
-
}
|
268 |
-
return html_content, image, initial_state
|
269 |
-
|
270 |
-
# Case 3: Medium confidence - show top 3 breeds with relative probabilities
|
271 |
-
else:
|
272 |
-
breeds_html = ""
|
273 |
-
for i, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
|
274 |
-
description = get_dog_description(breed)
|
275 |
-
formatted_description = format_description_html(description, breed) # 使用 format_description_html
|
276 |
-
breeds_html += f'''
|
277 |
-
<div class="dog-info-card">
|
278 |
-
<div class="breed-info">
|
279 |
-
<div class="breed-header">
|
280 |
-
<span class="breed-name">Breed {i+1}: {breed}</span>
|
281 |
-
<span class="confidence-badge">Confidence: {prob}</span>
|
282 |
-
</div>
|
283 |
-
{formatted_description}
|
284 |
-
</div>
|
285 |
-
</div>
|
286 |
-
'''
|
287 |
-
|
288 |
-
initial_state = {
|
289 |
-
"explanation": breeds_html,
|
290 |
-
"image": image,
|
291 |
-
"is_multi_dog": False
|
292 |
-
}
|
293 |
-
return breeds_html, image, initial_state
|
294 |
-
|
295 |
-
|
296 |
-
def create_breed_comparison(breed1: str, breed2: str) -> dict:
|
297 |
-
breed1_info = get_dog_description(breed1)
|
298 |
-
breed2_info = get_dog_description(breed2)
|
299 |
-
|
300 |
-
# 標準化數值轉換
|
301 |
-
value_mapping = {
|
302 |
-
'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
|
303 |
-
'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
|
304 |
-
'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
|
305 |
-
'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
|
306 |
-
}
|
307 |
-
|
308 |
-
comparison_data = {
|
309 |
-
breed1: {},
|
310 |
-
breed2: {}
|
311 |
-
}
|
312 |
-
|
313 |
-
for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
|
314 |
-
comparison_data[breed] = {
|
315 |
-
'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
|
316 |
-
'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
|
317 |
-
'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
|
318 |
-
'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
|
319 |
-
'Good_with_Children': info['Good with Children'] == 'Yes',
|
320 |
-
'Original_Data': info
|
321 |
-
}
|
322 |
-
|
323 |
-
return comparison_data
|
324 |
-
|
325 |
-
|
326 |
-
async def predict(image):
|
327 |
-
if image is None:
|
328 |
-
return "Please upload an image to start.", None, None
|
329 |
-
|
330 |
-
try:
|
331 |
-
if isinstance(image, np.ndarray):
|
332 |
-
image = Image.fromarray(image)
|
333 |
-
|
334 |
-
dogs = await detect_multiple_dogs(image)
|
335 |
-
# 更新顏色組合
|
336 |
-
single_dog_color = '#34C759' # 清爽的綠色作為單狗顏色
|
337 |
-
color_list = [
|
338 |
-
'#FF5733', # 珊瑚紅
|
339 |
-
'#28A745', # 深綠色
|
340 |
-
'#3357FF', # 寶藍色
|
341 |
-
'#FF33F5', # 粉紫色
|
342 |
-
'#FFB733', # 橙黃色
|
343 |
-
'#33FFF5', # 青藍色
|
344 |
-
'#A233FF', # 紫色
|
345 |
-
'#FF3333', # 紅色
|
346 |
-
'#33FFB7', # 青綠色
|
347 |
-
'#FFE033' # 金黃色
|
348 |
-
]
|
349 |
-
annotated_image = image.copy()
|
350 |
-
draw = ImageDraw.Draw(annotated_image)
|
351 |
-
|
352 |
-
try:
|
353 |
-
font = ImageFont.truetype("arial.ttf", 24)
|
354 |
-
except:
|
355 |
-
font = ImageFont.load_default()
|
356 |
-
|
357 |
-
dogs_info = ""
|
358 |
-
|
359 |
-
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
360 |
-
color = single_dog_color if len(dogs) == 1 else color_list[i % len(color_list)]
|
361 |
-
|
362 |
-
# 優化圖片上的標記
|
363 |
-
draw.rectangle(box, outline=color, width=4)
|
364 |
-
label = f"Dog {i+1}"
|
365 |
-
label_bbox = draw.textbbox((0, 0), label, font=font)
|
366 |
-
label_width = label_bbox[2] - label_bbox[0]
|
367 |
-
label_height = label_bbox[3] - label_bbox[1]
|
368 |
-
|
369 |
-
label_x = box[0] + 5
|
370 |
-
label_y = box[1] + 5
|
371 |
-
draw.rectangle(
|
372 |
-
[label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
|
373 |
-
fill='white',
|
374 |
-
outline=color,
|
375 |
-
width=2
|
376 |
-
)
|
377 |
-
draw.text((label_x, label_y), label, fill=color, font=font)
|
378 |
-
|
379 |
-
top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
|
380 |
-
combined_confidence = detection_confidence * top1_prob
|
381 |
-
|
382 |
-
# 開始資訊卡片
|
383 |
-
dogs_info += f'<div class="dog-info-card" style="border-left: 6px solid {color};">'
|
384 |
-
|
385 |
-
if combined_confidence < 0.2:
|
386 |
-
dogs_info += f'''
|
387 |
-
<div class="dog-info-header" style="background-color: {color}10;">
|
388 |
-
<span class="dog-label" style="color: {color};">Dog {i+1}</span>
|
389 |
-
</div>
|
390 |
-
<div class="breed-info">
|
391 |
-
<p class="warning-message">
|
392 |
-
<span class="icon">⚠️</span>
|
393 |
-
The image is unclear or the breed is not in the dataset. Please upload a clearer image.
|
394 |
-
</p>
|
395 |
-
</div>
|
396 |
-
'''
|
397 |
-
elif top1_prob >= 0.45:
|
398 |
-
breed = topk_breeds[0]
|
399 |
-
description = get_dog_description(breed)
|
400 |
-
dogs_info += f'''
|
401 |
-
<div class="dog-info-header" style="background-color: {color}10;">
|
402 |
-
<span class="dog-label" style="color: {color};">
|
403 |
-
<span class="icon">🐾</span> {breed}
|
404 |
-
</span>
|
405 |
-
</div>
|
406 |
-
<div class="breed-info">
|
407 |
-
<h2 class="section-title">
|
408 |
-
<span class="icon">📋</span> BASIC INFORMATION
|
409 |
-
</h2>
|
410 |
-
<div class="info-section">
|
411 |
-
<div class="info-item">
|
412 |
-
<span class="tooltip tooltip-left">
|
413 |
-
<span class="icon">📏</span>
|
414 |
-
<span class="label">Size:</span>
|
415 |
-
<span class="tooltip-icon">ⓘ</span>
|
416 |
-
<span class="tooltip-text">
|
417 |
-
<strong>Size Categories:</strong><br>
|
418 |
-
• Small: Under 20 pounds<br>
|
419 |
-
• Medium: 20-60 pounds<br>
|
420 |
-
• Large: Over 60 pounds<br>
|
421 |
-
• Giant: Over 100 pounds<br>
|
422 |
-
• Varies: Depends on variety
|
423 |
-
</span>
|
424 |
-
</span>
|
425 |
-
<span class="value">{description['Size']}</span>
|
426 |
-
</div>
|
427 |
-
<div class="info-item">
|
428 |
-
<span class="tooltip">
|
429 |
-
<span class="icon">⏳</span>
|
430 |
-
<span class="label">Lifespan:</span>
|
431 |
-
<span class="tooltip-icon">ⓘ</span>
|
432 |
-
<span class="tooltip-text">
|
433 |
-
<strong>Average Lifespan:</strong><br>
|
434 |
-
• Short: 6-8 years<br>
|
435 |
-
• Average: 10-15 years<br>
|
436 |
-
• Long: 12-20 years<br>
|
437 |
-
• Varies by size: Larger breeds typically have shorter lifespans
|
438 |
-
</span>
|
439 |
-
</span>
|
440 |
-
<span class="value">{description['Lifespan']}</span>
|
441 |
-
</div>
|
442 |
-
</div>
|
443 |
-
<h2 class="section-title">
|
444 |
-
<span class="icon">🐕</span> TEMPERAMENT & PERSONALITY
|
445 |
-
</h2>
|
446 |
-
<div class="temperament-section">
|
447 |
-
<span class="tooltip">
|
448 |
-
<span class="value">{description['Temperament']}</span>
|
449 |
-
<span class="tooltip-icon">ⓘ</span>
|
450 |
-
<span class="tooltip-text">
|
451 |
-
<strong>Temperament Guide:</strong><br>
|
452 |
-
• Describes the dog's natural behavior and personality<br>
|
453 |
-
• Important for matching with owner's lifestyle<br>
|
454 |
-
• Can be influenced by training and socialization
|
455 |
-
</span>
|
456 |
-
</span>
|
457 |
-
</div>
|
458 |
-
<h2 class="section-title">
|
459 |
-
<span class="icon">💪</span> CARE REQUIREMENTS
|
460 |
-
</h2>
|
461 |
-
<div class="care-section">
|
462 |
-
<div class="info-item">
|
463 |
-
<span class="tooltip tooltip-left">
|
464 |
-
<span class="icon">🏃</span>
|
465 |
-
<span class="label">Exercise:</span>
|
466 |
-
<span class="tooltip-icon">ⓘ</span>
|
467 |
-
<span class="tooltip-text">
|
468 |
-
<strong>Exercise Needs:</strong><br>
|
469 |
-
• Low: Short walks and play sessions<br>
|
470 |
-
• Moderate: 1-2 hours of daily activity<br>
|
471 |
-
• High: Extensive exercise (2+ hours/day)<br>
|
472 |
-
• Very High: Constant activity and mental stimulation needed
|
473 |
-
</span>
|
474 |
-
</span>
|
475 |
-
<span class="value">{description['Exercise Needs']}</span>
|
476 |
-
</div>
|
477 |
-
<div class="info-item">
|
478 |
-
<span class="tooltip">
|
479 |
-
<span class="icon">✂️</span>
|
480 |
-
<span class="label">Grooming:</span>
|
481 |
-
<span class="tooltip-icon">ⓘ</span>
|
482 |
-
<span class="tooltip-text">
|
483 |
-
<strong>Grooming Requirements:</strong><br>
|
484 |
-
• Low: Basic brushing, occasional baths<br>
|
485 |
-
• Moderate: Weekly brushing, occasional grooming<br>
|
486 |
-
• High: Daily brushing, frequent professional grooming needed<br>
|
487 |
-
• Professional care recommended for all levels
|
488 |
-
</span>
|
489 |
-
</span>
|
490 |
-
<span class="value">{description['Grooming Needs']}</span>
|
491 |
-
</div>
|
492 |
-
<div class="info-item">
|
493 |
-
<span class="tooltip">
|
494 |
-
<span class="icon">⭐</span>
|
495 |
-
<span class="label">Care Level:</span>
|
496 |
-
<span class="tooltip-icon">ⓘ</span>
|
497 |
-
<span class="tooltip-text">
|
498 |
-
<strong>Care Level Explained:</strong><br>
|
499 |
-
• Low: Basic care and attention needed<br>
|
500 |
-
• Moderate: Regular care and routine needed<br>
|
501 |
-
• High: Significant time and attention needed<br>
|
502 |
-
• Very High: Extensive care, training and attention required
|
503 |
-
</span>
|
504 |
-
</span>
|
505 |
-
<span class="value">{description['Care Level']}</span>
|
506 |
-
</div>
|
507 |
-
</div>
|
508 |
-
<h2 class="section-title">
|
509 |
-
<span class="icon">👨👩👧👦</span> FAMILY COMPATIBILITY
|
510 |
-
</h2>
|
511 |
-
<div class="family-section">
|
512 |
-
<div class="info-item">
|
513 |
-
<span class="tooltip">
|
514 |
-
<span class="icon"></span>
|
515 |
-
<span class="label">Good with Children:</span>
|
516 |
-
<span class="tooltip-icon">ⓘ</span>
|
517 |
-
<span class="tooltip-text">
|
518 |
-
<strong>Child Compatibility:</strong><br>
|
519 |
-
• Yes: Excellent with kids, patient and gentle<br>
|
520 |
-
• Moderate: Good with older children<br>
|
521 |
-
• No: Better suited for adult households
|
522 |
-
</span>
|
523 |
-
</span>
|
524 |
-
<span class="value">{description['Good with Children']}</span>
|
525 |
-
</div>
|
526 |
-
</div>
|
527 |
-
<h2 class="section-title">
|
528 |
-
<span class="icon">📝</span> DESCRIPTION
|
529 |
-
</h2>
|
530 |
-
<div class="description-section">
|
531 |
-
<p>{description.get('Description', '')}</p>
|
532 |
-
</div>
|
533 |
-
<div class="action-section">
|
534 |
-
<a href="{get_akc_breeds_link(breed)}" target="_blank" class="akc-button">
|
535 |
-
<span class="icon">🌐</span>
|
536 |
-
Learn more about {breed} on AKC website
|
537 |
-
</a>
|
538 |
-
</div>
|
539 |
-
</div>
|
540 |
-
'''
|
541 |
-
else:
|
542 |
-
dogs_info += f'''
|
543 |
-
<div class="dog-info-header" style="background-color: {color}10;">
|
544 |
-
<span class="dog-label" style="color: {color};">Dog {i+1}</span>
|
545 |
-
</div>
|
546 |
-
<div class="breed-info">
|
547 |
-
<div class="model-uncertainty-note">
|
548 |
-
<span class="icon">ℹ️</span>
|
549 |
-
Note: The model is showing some uncertainty in its predictions.
|
550 |
-
Here are the most likely breeds based on the available visual features.
|
551 |
-
</div>
|
552 |
-
<div class="breeds-list">
|
553 |
-
'''
|
554 |
-
|
555 |
-
for j, (breed, prob) in enumerate(zip(topk_breeds, relative_probs)):
|
556 |
-
description = get_dog_description(breed)
|
557 |
-
dogs_info += f'''
|
558 |
-
<div class="breed-option uncertainty-mode">
|
559 |
-
<div class="breed-header">
|
560 |
-
<span class="option-number">Option {j+1}</span>
|
561 |
-
<span class="breed-name">{breed}</span>
|
562 |
-
<span class="confidence-badge" style="background-color: {color}20; color: {color};">
|
563 |
-
Confidence: {prob}
|
564 |
-
</span>
|
565 |
-
</div>
|
566 |
-
<div class="breed-content">
|
567 |
-
{format_description_html(description, breed)}
|
568 |
-
</div>
|
569 |
-
</div>
|
570 |
-
'''
|
571 |
-
dogs_info += '</div></div>'
|
572 |
-
|
573 |
-
dogs_info += '</div>'
|
574 |
-
|
575 |
-
|
576 |
-
html_output = f"""
|
577 |
-
<div class="dog-info-card">
|
578 |
-
{dogs_info}
|
579 |
-
</div>
|
580 |
-
"""
|
581 |
-
|
582 |
-
initial_state = {
|
583 |
-
"dogs_info": dogs_info,
|
584 |
-
"image": annotated_image,
|
585 |
-
"is_multi_dog": len(dogs) > 1,
|
586 |
-
"html_output": html_output
|
587 |
-
}
|
588 |
-
|
589 |
-
return html_output, annotated_image, initial_state
|
590 |
-
|
591 |
-
except Exception as e:
|
592 |
-
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
593 |
-
print(error_msg)
|
594 |
-
return error_msg, None, None
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
def show_details_html(choice, previous_output, initial_state):
|
599 |
-
if not choice:
|
600 |
-
return previous_output, gr.update(visible=True), initial_state
|
601 |
-
|
602 |
-
try:
|
603 |
-
breed = choice.split("More about ")[-1]
|
604 |
-
description = get_dog_description(breed)
|
605 |
-
formatted_description = format_description_html(description, breed)
|
606 |
-
|
607 |
-
html_output = f"""
|
608 |
-
<div class="dog-info">
|
609 |
-
<h2>{breed}</h2>
|
610 |
-
{formatted_description}
|
611 |
-
</div>
|
612 |
-
"""
|
613 |
-
|
614 |
-
initial_state["current_description"] = html_output
|
615 |
-
initial_state["original_buttons"] = initial_state.get("buttons", [])
|
616 |
-
|
617 |
-
return html_output, gr.update(visible=True), initial_state
|
618 |
-
except Exception as e:
|
619 |
-
error_msg = f"An error occurred while showing details: {e}"
|
620 |
-
print(error_msg)
|
621 |
-
return f"<p style='color: red;'>{error_msg}</p>", gr.update(visible=True), initial_state
|
622 |
-
|
623 |
-
|
624 |
-
def format_description_html(description, breed):
|
625 |
-
html = "<ul style='list-style-type: none; padding-left: 0;'>"
|
626 |
-
if isinstance(description, dict):
|
627 |
-
for key, value in description.items():
|
628 |
-
if key != "Breed": # 跳過重複的品種顯示
|
629 |
-
if key == "Size":
|
630 |
-
html += f'''
|
631 |
-
<li style='margin-bottom: 10px;'>
|
632 |
-
<span class="tooltip">
|
633 |
-
<strong>{key}:</strong>
|
634 |
-
<span class="tooltip-icon">ⓘ</span>
|
635 |
-
<span class="tooltip-text">
|
636 |
-
<strong>Size Categories:</strong><br>
|
637 |
-
• Small: Under 20 pounds<br>
|
638 |
-
• Medium: 20-60 pounds<br>
|
639 |
-
• Large: Over 60 pounds
|
640 |
-
</span>
|
641 |
-
</span> {value}
|
642 |
-
</li>
|
643 |
-
'''
|
644 |
-
elif key == "Exercise Needs":
|
645 |
-
html += f'''
|
646 |
-
<li style='margin-bottom: 10px;'>
|
647 |
-
<span class="tooltip">
|
648 |
-
<strong>{key}:</strong>
|
649 |
-
<span class="tooltip-icon">ⓘ</span>
|
650 |
-
<span class="tooltip-text">
|
651 |
-
<strong>Exercise Needs:</strong><br>
|
652 |
-
• High: 2+ hours of daily exercise<br>
|
653 |
-
• Moderate: 1-2 hours of daily activity<br>
|
654 |
-
• Low: Short walks and play sessions
|
655 |
-
</span>
|
656 |
-
</span> {value}
|
657 |
-
</li>
|
658 |
-
'''
|
659 |
-
elif key == "Grooming Needs":
|
660 |
-
html += f'''
|
661 |
-
<li style='margin-bottom: 10px;'>
|
662 |
-
<span class="tooltip">
|
663 |
-
<strong>{key}:</strong>
|
664 |
-
<span class="tooltip-icon">ⓘ</span>
|
665 |
-
<span class="tooltip-text">
|
666 |
-
<strong>Grooming Requirements:</strong><br>
|
667 |
-
• High: Daily brushing, regular professional care<br>
|
668 |
-
• Moderate: Weekly brushing, occasional grooming<br>
|
669 |
-
• Low: Minimal brushing, basic maintenance
|
670 |
-
</span>
|
671 |
-
</span> {value}
|
672 |
-
</li>
|
673 |
-
'''
|
674 |
-
elif key == "Care Level":
|
675 |
-
html += f'''
|
676 |
-
<li style='margin-bottom: 10px;'>
|
677 |
-
<span class="tooltip">
|
678 |
-
<strong>{key}:</strong>
|
679 |
-
<span class="tooltip-icon">ⓘ</span>
|
680 |
-
<span class="tooltip-text">
|
681 |
-
<strong>Care Level Explained:</strong><br>
|
682 |
-
• High: Needs significant training and attention<br>
|
683 |
-
• Moderate: Regular care and routine needed<br>
|
684 |
-
• Low: More independent, basic care sufficient
|
685 |
-
</span>
|
686 |
-
</span> {value}
|
687 |
-
</li>
|
688 |
-
'''
|
689 |
-
elif key == "Good with Children":
|
690 |
-
html += f'''
|
691 |
-
<li style='margin-bottom: 10px;'>
|
692 |
-
<span class="tooltip">
|
693 |
-
<strong>{key}:</strong>
|
694 |
-
<span class="tooltip-icon">ⓘ</span>
|
695 |
-
<span class="tooltip-text">
|
696 |
-
<strong>Child Compatibility:</strong><br>
|
697 |
-
• Yes: Excellent with kids, patient and gentle<br>
|
698 |
-
• Moderate: Good with older children<br>
|
699 |
-
• No: Better suited for adult households
|
700 |
-
</span>
|
701 |
-
</span> {value}
|
702 |
-
</li>
|
703 |
-
'''
|
704 |
-
elif key == "Lifespan":
|
705 |
-
html += f'''
|
706 |
-
<li style='margin-bottom: 10px;'>
|
707 |
-
<span class="tooltip">
|
708 |
-
<strong>{key}:</strong>
|
709 |
-
<span class="tooltip-icon">ⓘ</span>
|
710 |
-
<span class="tooltip-text">
|
711 |
-
<strong>Average Lifespan:</strong><br>
|
712 |
-
• Short: 6-8 years<br>
|
713 |
-
• Average: 10-15 years<br>
|
714 |
-
• Long: 12-20 years
|
715 |
-
</span>
|
716 |
-
</span> {value}
|
717 |
-
</li>
|
718 |
-
'''
|
719 |
-
elif key == "Temperament":
|
720 |
-
html += f'''
|
721 |
-
<li style='margin-bottom: 10px;'>
|
722 |
-
<span class="tooltip">
|
723 |
-
<strong>{key}:</strong>
|
724 |
-
<span class="tooltip-icon">ⓘ</span>
|
725 |
-
<span class="tooltip-text">
|
726 |
-
<strong>Temperament Guide:</strong><br>
|
727 |
-
• Describes the dog's natural behavior<br>
|
728 |
-
• Important for matching with owner
|
729 |
-
</span>
|
730 |
-
</span> {value}
|
731 |
-
</li>
|
732 |
-
'''
|
733 |
-
else:
|
734 |
-
# 其他欄位保持原樣顯示
|
735 |
-
html += f"<li style='margin-bottom: 10px;'><strong>{key}:</strong> {value}</li>"
|
736 |
-
else:
|
737 |
-
html += f"<li>{description}</li>"
|
738 |
-
html += "</ul>"
|
739 |
-
|
740 |
-
# 添加AKC連結
|
741 |
-
html += f'''
|
742 |
-
<div class="action-section">
|
743 |
-
<a href="{get_akc_breeds_link(breed)}" target="_blank" class="akc-button">
|
744 |
-
<span class="icon">🌐</span>
|
745 |
-
Learn more about {breed} on AKC website
|
746 |
-
</a>
|
747 |
-
</div>
|
748 |
-
'''
|
749 |
-
return html
|
750 |
-
|
751 |
-
with gr.Blocks(css=get_css_styles()) as iface:
|
752 |
-
|
753 |
-
gr.HTML("""
|
754 |
-
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
755 |
-
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
756 |
-
🐾 PawMatch AI
|
757 |
-
</h1>
|
758 |
-
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
|
759 |
-
Your Smart Dog Breed Guide
|
760 |
-
</h2>
|
761 |
-
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
|
762 |
-
<p style='color: #718096; font-size: 0.9em;'>
|
763 |
-
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
|
764 |
-
</p>
|
765 |
-
</header>
|
766 |
-
""")
|
767 |
-
|
768 |
-
def main():
|
769 |
-
with gr.Blocks(css=get_css_styles()) as iface:
|
770 |
-
# Header HTML
|
771 |
-
gr.HTML("""
|
772 |
-
<header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
|
773 |
-
<h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
|
774 |
-
🐾 PawMatch AI
|
775 |
-
</h1>
|
776 |
-
<h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
|
777 |
-
Your Smart Dog Breed Guide
|
778 |
-
</h2>
|
779 |
-
<div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
|
780 |
-
<p style='color: #718096; font-size: 0.9em;'>
|
781 |
-
Powered by AI • Breed Recognition • Smart Matching • Companion Guide
|
782 |
-
</p>
|
783 |
-
</header>
|
784 |
-
""")
|
785 |
-
|
786 |
-
# 先創建歷史組件實例(但不創建標籤頁)
|
787 |
-
history_component = create_history_component()
|
788 |
-
|
789 |
-
with gr.Tabs():
|
790 |
-
# 1. 品種檢測標籤頁
|
791 |
-
example_images = [
|
792 |
-
'Border_Collie.jpg',
|
793 |
-
'Golden_Retriever.jpeg',
|
794 |
-
'Saint_Bernard.jpeg',
|
795 |
-
'Samoyed.jpg',
|
796 |
-
'French_Bulldog.jpeg'
|
797 |
-
]
|
798 |
-
detection_components = create_detection_tab(predict, example_images)
|
799 |
-
|
800 |
-
# 2. 品種比較標籤頁
|
801 |
-
comparison_components = create_comparison_tab(
|
802 |
-
dog_breeds=dog_breeds,
|
803 |
-
get_dog_description=get_dog_description
|
804 |
-
)
|
805 |
-
|
806 |
-
# 3. 品種推薦標籤頁
|
807 |
-
recommendation_components = create_recommendation_tab(
|
808 |
-
UserPreferences=UserPreferences,
|
809 |
-
get_breed_recommendations=get_breed_recommendations,
|
810 |
-
format_recommendation_html=format_recommendation_html,
|
811 |
-
history_component=history_component
|
812 |
-
)
|
813 |
-
|
814 |
-
# 4. 最後創建歷史記錄標籤頁
|
815 |
-
create_history_tab(history_component)
|
816 |
-
|
817 |
-
# Footer
|
818 |
-
gr.HTML('''
|
819 |
-
For more details on this project and other work, feel free to visit my GitHub
|
820 |
-
<a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">
|
821 |
-
Dog Breed Classifier
|
822 |
-
</a>
|
823 |
-
''')
|
824 |
-
|
825 |
-
return iface
|
826 |
-
|
827 |
-
if __name__ == "__main__":
|
828 |
-
iface = main()
|
829 |
-
iface.launch(share=True, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|