DawnC commited on
Commit
1fabe7c
โ€ข
1 Parent(s): 5773c54

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -40
app.py CHANGED
@@ -181,42 +181,26 @@ async def predict_single_dog(image):
181
  # return dogs
182
 
183
 
184
- async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
185
- try:
186
- results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
187
- dogs = []
188
- for box in results.boxes:
189
- if box.cls == 16: # COCO dataset class for dog is 16
190
- xyxy = box.xyxy[0].tolist()
191
- confidence = box.conf.item()
192
- cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
193
- dogs.append((cropped_image, confidence, xyxy))
194
-
195
- # If no dogs are detected, use the whole image
196
- if not dogs:
197
- logger.info("No dogs detected, using the whole image.")
198
- dogs = [(image, 1.0, [0, 0, image.width, image.height])]
199
-
200
- return dogs
201
- except Exception as e:
202
- logger.error(f"Error in detect_multiple_dogs: {str(e)}")
203
- return [(image, 1.0, [0, 0, image.width, image.height])]
204
-
205
  async def predict_single_dog(image):
206
- try:
207
- image_tensor = preprocess_image(image)
208
- with torch.no_grad():
209
- output = model(image_tensor)
210
- logits = output[0] if isinstance(output, tuple) else output
211
- probabilities = F.softmax(logits, dim=1)
212
- topk_probs, topk_indices = torch.topk(probabilities, k=3)
213
- top1_prob = topk_probs[0][0].item()
214
- topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
215
- topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
216
- return top1_prob, topk_breeds, topk_probs_percent
217
- except Exception as e:
218
- logger.error(f"Error in predict_single_dog: {str(e)}")
219
- return 0, ["Unknown"], ["0%"]
 
 
 
 
 
220
 
221
 
222
  async def process_single_dog(image):
@@ -418,7 +402,7 @@ async def process_single_dog(image):
418
 
419
  async def predict(image):
420
  if image is None:
421
- return "Please upload an image to start.", None, gr.update(visible=False), None
422
 
423
  try:
424
  if isinstance(image, np.ndarray):
@@ -426,6 +410,9 @@ async def predict(image):
426
 
427
  dogs = await detect_multiple_dogs(image)
428
 
 
 
 
429
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
430
  explanations = []
431
  buttons = []
@@ -476,8 +463,8 @@ async def predict(image):
476
  return final_explanation, annotated_image, gr.update(visible=False), initial_state
477
 
478
  except Exception as e:
479
- error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
480
- logger.error(error_msg)
481
  return error_msg, None, gr.update(visible=False), None
482
 
483
 
@@ -508,8 +495,8 @@ def go_back(state):
508
  gr.update(visible=False),
509
  state
510
  )
 
511
 
512
- # ไฟฎๆ”น Gradio ็•Œ้ข็ตๆง‹
513
  with gr.Blocks() as iface:
514
  gr.HTML("<h1 style='text-align: center;'>๐Ÿถ Dog Breed Classifier ๐Ÿ”</h1>")
515
  gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
@@ -543,7 +530,7 @@ with gr.Blocks() as iface:
543
  inputs=[initial_state],
544
  outputs=[output, output_image, breed_buttons, back_button, initial_state]
545
  )
546
-
547
  gr.Examples(
548
  examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
549
  inputs=input_image
 
181
  # return dogs
182
 
183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  async def predict_single_dog(image):
185
+ image_tensor = preprocess(image).unsqueeze(0)
186
+ with torch.no_grad():
187
+ output = model(image_tensor)
188
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
189
+ top3_prob, top3_catid = torch.topk(probabilities, 3)
190
+ top3_breeds = [dog_breeds[idx.item()] for idx in top3_catid]
191
+ top3_probs = [f"{prob.item()*100:.2f}%" for prob in top3_prob]
192
+ return top3_prob[0].item(), top3_breeds, top3_probs
193
+
194
+ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
195
+ results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
196
+ dogs = []
197
+ for box in results.boxes:
198
+ if box.cls == 16: # COCO dataset class for dog is 16
199
+ xyxy = box.xyxy[0].tolist()
200
+ confidence = box.conf.item()
201
+ cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
202
+ dogs.append((cropped_image, confidence, xyxy))
203
+ return dogs
204
 
205
 
206
  async def process_single_dog(image):
 
402
 
403
  async def predict(image):
404
  if image is None:
405
+ return "Please upload an image to start.", None, [], gr.update(visible=False), None
406
 
407
  try:
408
  if isinstance(image, np.ndarray):
 
410
 
411
  dogs = await detect_multiple_dogs(image)
412
 
413
+ if len(dogs) == 0:
414
+ dogs = [(image, 1.0, [0, 0, image.width, image.height])]
415
+
416
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
417
  explanations = []
418
  buttons = []
 
463
  return final_explanation, annotated_image, gr.update(visible=False), initial_state
464
 
465
  except Exception as e:
466
+ error_msg = f"An error occurred: {str(e)}"
467
+ print(error_msg)
468
  return error_msg, None, gr.update(visible=False), None
469
 
470
 
 
495
  gr.update(visible=False),
496
  state
497
  )
498
+
499
 
 
500
  with gr.Blocks() as iface:
501
  gr.HTML("<h1 style='text-align: center;'>๐Ÿถ Dog Breed Classifier ๐Ÿ”</h1>")
502
  gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
 
530
  inputs=[initial_state],
531
  outputs=[output, output_image, breed_buttons, back_button, initial_state]
532
  )
533
+
534
  gr.Examples(
535
  examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
536
  inputs=input_image