Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +131 -467
scoring_calculation_system.py
CHANGED
@@ -206,205 +206,6 @@ def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences'
|
|
206 |
return factors
|
207 |
|
208 |
|
209 |
-
@staticmethod
|
210 |
-
def calculate_family_safety_score(breed_info: dict, children_age: str) -> float:
|
211 |
-
temperament = breed_info.get('Temperament', '').lower()
|
212 |
-
size = breed_info.get('Size', 'Medium')
|
213 |
-
|
214 |
-
# 基礎安全分數必須根據孩童年齡有所不同
|
215 |
-
base_safety_scores = {
|
216 |
-
'toddler': {
|
217 |
-
"Small": 0.85, # 幼童與小型犬相對安全
|
218 |
-
"Medium": 0.60, # 中型犬需要更多注意
|
219 |
-
"Large": 0.40, # 大型犬風險較高
|
220 |
-
"Giant": 0.30 # 巨型犬風險最高
|
221 |
-
},
|
222 |
-
'school_age': {
|
223 |
-
"Small": 0.90, # 學齡兒童與小型犬很合適
|
224 |
-
"Medium": 0.75, # 中型犬可以接受
|
225 |
-
"Large": 0.55, # 大型犬需要注意
|
226 |
-
"Giant": 0.45 # 巨型犬仍需謹慎
|
227 |
-
},
|
228 |
-
'teenager': {
|
229 |
-
"Small": 0.95, # 青少年幾乎能應付所有小型犬
|
230 |
-
"Medium": 0.85, # 中型犬很合適
|
231 |
-
"Large": 0.70, # 大型犬可以考慮
|
232 |
-
"Giant": 0.60 # 巨型犬仍需小心
|
233 |
-
}
|
234 |
-
}
|
235 |
-
|
236 |
-
# 根據孩童年齡選擇對應的基礎分數
|
237 |
-
safety_score = base_safety_scores[children_age][size]
|
238 |
-
|
239 |
-
# 年齡特定的危險特徵評估
|
240 |
-
age_specific_dangerous_traits = {
|
241 |
-
'toddler': {
|
242 |
-
'aggressive': -0.40, # 幼童最危險
|
243 |
-
'territorial': -0.35,
|
244 |
-
'protective': -0.30,
|
245 |
-
'nervous': -0.30,
|
246 |
-
'dominant': -0.25,
|
247 |
-
'energetic': -0.20 # 過度活潑對幼童也是風險
|
248 |
-
},
|
249 |
-
'school_age': {
|
250 |
-
'aggressive': -0.30,
|
251 |
-
'territorial': -0.25,
|
252 |
-
'protective': -0.20,
|
253 |
-
'nervous': -0.20,
|
254 |
-
'dominant': -0.15,
|
255 |
-
'energetic': -0.10
|
256 |
-
},
|
257 |
-
'teenager': {
|
258 |
-
'aggressive': -0.20,
|
259 |
-
'territorial': -0.15,
|
260 |
-
'protective': -0.10,
|
261 |
-
'nervous': -0.15,
|
262 |
-
'dominant': -0.10,
|
263 |
-
'energetic': -0.05
|
264 |
-
}
|
265 |
-
}
|
266 |
-
|
267 |
-
# 套用年齡特定的特徵評估
|
268 |
-
for trait, penalty in age_specific_dangerous_traits[children_age].items():
|
269 |
-
if trait in temperament:
|
270 |
-
safety_score += penalty
|
271 |
-
|
272 |
-
# 正面特徵評估(根據年齡調整獎勵程度)
|
273 |
-
positive_traits_by_age = {
|
274 |
-
'toddler': {
|
275 |
-
'gentle': 0.15,
|
276 |
-
'patient': 0.15,
|
277 |
-
'calm': 0.12,
|
278 |
-
'tolerant': 0.12
|
279 |
-
},
|
280 |
-
'school_age': {
|
281 |
-
'gentle': 0.12,
|
282 |
-
'patient': 0.12,
|
283 |
-
'playful': 0.10,
|
284 |
-
'friendly': 0.10
|
285 |
-
},
|
286 |
-
'teenager': {
|
287 |
-
'friendly': 0.10,
|
288 |
-
'playful': 0.10,
|
289 |
-
'adaptable': 0.08,
|
290 |
-
'trainable': 0.08
|
291 |
-
}
|
292 |
-
}
|
293 |
-
|
294 |
-
# 套用正面特徵評估
|
295 |
-
for trait, bonus in positive_traits_by_age[children_age].items():
|
296 |
-
if trait in temperament:
|
297 |
-
safety_score += bonus
|
298 |
-
|
299 |
-
# 特殊風險評估(對所有年齡都很重要)
|
300 |
-
description = breed_info.get('Description', '').lower()
|
301 |
-
if 'history of' in description:
|
302 |
-
safety_score -= 0.25
|
303 |
-
if 'requires experienced' in description:
|
304 |
-
safety_score -= 0.15
|
305 |
-
|
306 |
-
# 確保分數在合理範圍內
|
307 |
-
return max(0.2, min(0.95, safety_score))
|
308 |
-
|
309 |
-
# def calculate_family_safety_score(breed_info: dict, children_age: str) -> float:
|
310 |
-
# """
|
311 |
-
# 計算品種與家庭/兒童的安全相容性分數,作為calculate_compatibility_score的一部分
|
312 |
-
|
313 |
-
# 參數:
|
314 |
-
# breed_info (dict): 品種資訊
|
315 |
-
# children_age (str): 兒童年齡組別 ('toddler', 'school_age', 'teenager')
|
316 |
-
|
317 |
-
# 返回:
|
318 |
-
# float: 0.2-0.95之間的安全分數
|
319 |
-
# """
|
320 |
-
# temperament = breed_info.get('Temperament', '').lower()
|
321 |
-
# size = breed_info.get('Size', 'Medium')
|
322 |
-
|
323 |
-
# # 基礎安全分數(根據體型)
|
324 |
-
# base_safety_scores = {
|
325 |
-
# "Small": 0.80, # 從 0.85 降至 0.80
|
326 |
-
# "Medium": 0.65, # 從 0.75 降至 0.65
|
327 |
-
# "Large": 0.50, # 從 0.65 降至 0.50
|
328 |
-
# "Giant": 0.40 # 從 0.55 降至 0.40
|
329 |
-
# }
|
330 |
-
# safety_score = base_safety_scores.get(size, 0.60)
|
331 |
-
|
332 |
-
# # 加強年齡相關的調整力度
|
333 |
-
# age_factors = {
|
334 |
-
# 'toddler': {
|
335 |
-
# 'base_modifier': -0.25, # 從 -0.15 降至 -0.25
|
336 |
-
# 'size_penalty': {
|
337 |
-
# "Small": -0.10, # 從 -0.05 降至 -0.10
|
338 |
-
# "Medium": -0.20, # 從 -0.10 降至 -0.20
|
339 |
-
# "Large": -0.30, # 從 -0.20 降至 -0.30
|
340 |
-
# "Giant": -0.35 # 從 -0.25 降至 -0.35
|
341 |
-
# }
|
342 |
-
# },
|
343 |
-
# 'school_age': {
|
344 |
-
# 'base_modifier': -0.15, # 從 -0.08 降至 -0.15
|
345 |
-
# 'size_penalty': {
|
346 |
-
# "Small": -0.05,
|
347 |
-
# "Medium": -0.10,
|
348 |
-
# "Large": -0.20,
|
349 |
-
# "Giant": -0.25
|
350 |
-
# }
|
351 |
-
# },
|
352 |
-
# 'teenager': {
|
353 |
-
# 'base_modifier': -0.08, # 從 -0.05 降至 -0.08
|
354 |
-
# 'size_penalty': {
|
355 |
-
# "Small": -0.02,
|
356 |
-
# "Medium": -0.05,
|
357 |
-
# "Large": -0.10,
|
358 |
-
# "Giant": -0.15
|
359 |
-
# }
|
360 |
-
# }
|
361 |
-
# }
|
362 |
-
|
363 |
-
# # 加強對危險特徵的評估
|
364 |
-
# dangerous_traits = {
|
365 |
-
# 'aggressive': -0.35, # 從 -0.25 加重到 -0.35
|
366 |
-
# 'territorial': -0.30, # 從 -0.20 加重到 -0.30
|
367 |
-
# 'protective': -0.25, # 從 -0.15 加重到 -0.25
|
368 |
-
# 'nervous': -0.25, # 從 -0.15 加重到 -0.25
|
369 |
-
# 'dominant': -0.20, # 從 -0.15 加重到 -0.20
|
370 |
-
# 'strong-willed': -0.18, # 從 -0.12 加重到 -0.18
|
371 |
-
# 'independent': -0.15, # 從 -0.10 加重到 -0.15
|
372 |
-
# 'energetic': -0.12 # 從 -0.08 加重到 -0.12
|
373 |
-
# }
|
374 |
-
|
375 |
-
# # 特殊風險評估加重
|
376 |
-
# if 'history of' in breed_info.get('Description', '').lower():
|
377 |
-
# safety_score -= 0.25 # 從 -0.15 加重到 -0.25
|
378 |
-
# if 'requires experienced' in breed_info.get('Description', '').lower():
|
379 |
-
# safety_score -= 0.20 # 從 -0.10 加重到 -0.20
|
380 |
-
|
381 |
-
# # 計算特徵分數
|
382 |
-
# for trait, bonus in positive_traits.items():
|
383 |
-
# if trait in temperament:
|
384 |
-
# safety_score += bonus * 0.8 # 降低正面特徵的影響力
|
385 |
-
|
386 |
-
# for trait, penalty in dangerous_traits.items():
|
387 |
-
# if trait in temperament:
|
388 |
-
# # 對幼童加重懲罰
|
389 |
-
# if children_age == 'toddler':
|
390 |
-
# safety_score += penalty * 1.3
|
391 |
-
# # 對青少年略微減輕懲罰
|
392 |
-
# elif children_age == 'teenager':
|
393 |
-
# safety_score += penalty * 0.8
|
394 |
-
# else:
|
395 |
-
# safety_score += penalty
|
396 |
-
|
397 |
-
# # 特殊風險評估
|
398 |
-
# description = breed_info.get('Description', '').lower()
|
399 |
-
# if 'history of' in description:
|
400 |
-
# safety_score -= 0.15
|
401 |
-
# if 'requires experienced' in description:
|
402 |
-
# safety_score -= 0.10
|
403 |
-
|
404 |
-
# # 將分數限制在合理範圍內
|
405 |
-
# return max(0.2, min(0.95, safety_score))
|
406 |
-
|
407 |
-
|
408 |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
|
409 |
"""計算品種與使用者條件的相容性分數的優化版本"""
|
410 |
try:
|
@@ -493,175 +294,111 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
493 |
return base_score
|
494 |
|
495 |
|
496 |
-
# def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
497 |
-
# """
|
498 |
-
# 計算使用者經驗與品種需求的匹配分數
|
499 |
-
|
500 |
-
# 參數說明:
|
501 |
-
# care_level: 品種的照顧難度 ("High", "Moderate", "Low")
|
502 |
-
# user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced")
|
503 |
-
# temperament: 品種的性格特徵描述
|
504 |
-
|
505 |
-
# 返回:
|
506 |
-
# float: 0.2-1.0 之間的匹配分數
|
507 |
-
# """
|
508 |
-
# # 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
|
509 |
-
# base_scores = {
|
510 |
-
# "High": {
|
511 |
-
# "beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰
|
512 |
-
# "intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間
|
513 |
-
# "advanced": 1.0 # 資深者能完全勝任
|
514 |
-
# },
|
515 |
-
# "Moderate": {
|
516 |
-
# "beginner": 0.35, # 適中難度對新手來說仍具挑戰
|
517 |
-
# "intermediate": 0.82, # 中級玩家有很好的勝任能力
|
518 |
-
# "advanced": 1.0 # 資深者完全勝任
|
519 |
-
# },
|
520 |
-
# "Low": {
|
521 |
-
# "beginner": 0.72, # 低難度品種適合新手
|
522 |
-
# "intermediate": 0.92, # 中級玩家幾乎完全勝任
|
523 |
-
# "advanced": 1.0 # 資深者完全勝任
|
524 |
-
# }
|
525 |
-
# }
|
526 |
-
|
527 |
-
# # 取得基礎分數
|
528 |
-
# score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
529 |
-
|
530 |
-
# # 性格特徵評估 - 根據經驗等級調整權重
|
531 |
-
# temperament_lower = temperament.lower()
|
532 |
-
# temperament_adjustments = 0.0
|
533 |
-
|
534 |
-
# if user_experience == "beginner":
|
535 |
-
# # 新手不適合的特徵 - 更嚴格的懲罰
|
536 |
-
# difficult_traits = {
|
537 |
-
# 'stubborn': -0.15, # 加重固執的懲罰
|
538 |
-
# 'independent': -0.12, # 加重獨立性的懲罰
|
539 |
-
# 'dominant': -0.12, # 加重支配性的懲罰
|
540 |
-
# 'strong-willed': -0.10, # 加重強勢的懲罰
|
541 |
-
# 'protective': -0.08, # 加重保護性的懲罰
|
542 |
-
# 'aloof': -0.08, # 加重冷漠的懲罰
|
543 |
-
# 'energetic': -0.06 # 輕微懲罰高能量
|
544 |
-
# }
|
545 |
-
|
546 |
-
# # 新手友善的特徵 - 提供更多獎勵
|
547 |
-
# easy_traits = {
|
548 |
-
# 'gentle': 0.08, # 增加溫和的獎勵
|
549 |
-
# 'friendly': 0.08, # 增加友善的獎勵
|
550 |
-
# 'eager to please': 0.08, # 增加順從的獎勵
|
551 |
-
# 'patient': 0.06, # 獎勵耐心
|
552 |
-
# 'adaptable': 0.06, # 獎勵適應性
|
553 |
-
# 'calm': 0.05 # 獎勵冷靜
|
554 |
-
# }
|
555 |
-
|
556 |
-
# # 計算特徵調整
|
557 |
-
# for trait, penalty in difficult_traits.items():
|
558 |
-
# if trait in temperament_lower:
|
559 |
-
# temperament_adjustments += penalty * 1.2 # 加重新手的懲罰
|
560 |
-
|
561 |
-
# for trait, bonus in easy_traits.items():
|
562 |
-
# if trait in temperament_lower:
|
563 |
-
# temperament_adjustments += bonus
|
564 |
-
|
565 |
-
# # 品種特殊調整
|
566 |
-
# if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
|
567 |
-
# temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰
|
568 |
-
|
569 |
-
# elif user_experience == "intermediate":
|
570 |
-
# # 中級玩家的調整更加平衡
|
571 |
-
# moderate_traits = {
|
572 |
-
# 'intelligent': 0.05, # 獎勵聰明
|
573 |
-
# 'athletic': 0.04, # 獎勵運動能力
|
574 |
-
# 'versatile': 0.04, # 獎勵多功能性
|
575 |
-
# 'stubborn': -0.06, # 輕微懲罰固執
|
576 |
-
# 'independent': -0.05, # 輕微懲罰獨立性
|
577 |
-
# 'protective': -0.04 # 輕微懲罰保護性
|
578 |
-
# }
|
579 |
-
|
580 |
-
# for trait, adjustment in moderate_traits.items():
|
581 |
-
# if trait in temperament_lower:
|
582 |
-
# temperament_adjustments += adjustment
|
583 |
-
|
584 |
-
# else: # advanced
|
585 |
-
# # 資深玩家能夠應對挑戰性特徵
|
586 |
-
# advanced_traits = {
|
587 |
-
# 'stubborn': 0.04, # 反轉為優勢
|
588 |
-
# 'independent': 0.04, # 反轉為優勢
|
589 |
-
# 'intelligent': 0.05, # 獎勵聰明
|
590 |
-
# 'protective': 0.04, # 獎勵保護性
|
591 |
-
# 'strong-willed': 0.03 # 獎勵強勢
|
592 |
-
# }
|
593 |
-
|
594 |
-
# for trait, bonus in advanced_traits.items():
|
595 |
-
# if trait in temperament_lower:
|
596 |
-
# temperament_adjustments += bonus
|
597 |
-
|
598 |
-
# # 確保最終分數在合理範圍內
|
599 |
-
# final_score = max(0.2, min(1.0, score + temperament_adjustments))
|
600 |
-
# return final_score
|
601 |
-
|
602 |
-
|
603 |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
604 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
base_scores = {
|
606 |
"High": {
|
607 |
-
"beginner": 0.
|
608 |
-
"intermediate": 0.
|
609 |
-
"advanced": 0
|
610 |
},
|
611 |
"Moderate": {
|
612 |
-
"beginner": 0.
|
613 |
-
"intermediate": 0.
|
614 |
-
"advanced": 0
|
615 |
},
|
616 |
"Low": {
|
617 |
-
"beginner": 0.
|
618 |
-
"intermediate": 0.
|
619 |
-
"advanced": 0
|
620 |
}
|
621 |
}
|
622 |
|
623 |
-
#
|
624 |
-
|
625 |
|
626 |
-
#
|
627 |
temperament_lower = temperament.lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
628 |
|
629 |
-
#
|
630 |
-
|
631 |
-
|
632 |
-
'dominant': 0.25,
|
633 |
-
'stubborn': 0.25,
|
634 |
-
'independent': 0.2,
|
635 |
-
'protective': 0.2,
|
636 |
-
'strong-willed': 0.15
|
637 |
-
}
|
638 |
-
|
639 |
-
difficulty_score = sum(value for trait, value in difficulty_traits.items()
|
640 |
-
if trait in temperament_lower)
|
641 |
-
|
642 |
-
# 根據經驗等級調整難度的影響
|
643 |
-
experience_modifiers = {
|
644 |
-
"beginner": 1.2, # 新手受難度影響最大
|
645 |
-
"intermediate": 0.8, # 中級玩家受中等影響
|
646 |
-
"advanced": 0.5 # 專家受較小影響但仍然存在
|
647 |
-
}
|
648 |
-
|
649 |
-
# 應用經驗調整
|
650 |
-
difficulty_impact = difficulty_score * experience_modifiers[user_experience]
|
651 |
-
adjusted_score = base_score * (1 - difficulty_impact)
|
652 |
-
|
653 |
-
# 特殊品種類型的額外調整
|
654 |
-
breed_type_penalties = {
|
655 |
-
'terrier': {'beginner': -0.15, 'intermediate': -0.08, 'advanced': -0.04},
|
656 |
-
'working': {'beginner': -0.2, 'intermediate': -0.1, 'advanced': -0.05},
|
657 |
-
'guard': {'beginner': -0.25, 'intermediate': -0.12, 'advanced': -0.06}
|
658 |
-
}
|
659 |
-
|
660 |
-
for breed_type, penalties in breed_type_penalties.items():
|
661 |
-
if breed_type in temperament_lower:
|
662 |
-
adjusted_score += penalties[user_experience]
|
663 |
-
|
664 |
-
return max(0.2, min(0.95, adjusted_score))
|
665 |
|
666 |
|
667 |
def calculate_health_score(breed_name: str) -> float:
|
@@ -781,75 +518,6 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
781 |
|
782 |
return max(0.2, min(1.0, final_score))
|
783 |
|
784 |
-
# # 計算所有基礎分數
|
785 |
-
# scores = {
|
786 |
-
# 'space': calculate_space_score(
|
787 |
-
# breed_info['Size'],
|
788 |
-
# user_prefs.living_space,
|
789 |
-
# user_prefs.space_for_play,
|
790 |
-
# breed_info.get('Exercise Needs', 'Moderate')
|
791 |
-
# ),
|
792 |
-
# 'exercise': calculate_exercise_score(
|
793 |
-
# breed_info.get('Exercise Needs', 'Moderate'),
|
794 |
-
# user_prefs.exercise_time
|
795 |
-
# ),
|
796 |
-
# 'grooming': calculate_grooming_score(
|
797 |
-
# breed_info.get('Grooming Needs', 'Moderate'),
|
798 |
-
# user_prefs.grooming_commitment.lower(),
|
799 |
-
# breed_info['Size']
|
800 |
-
# ),
|
801 |
-
# 'experience': calculate_experience_score(
|
802 |
-
# breed_info.get('Care Level', 'Moderate'),
|
803 |
-
# user_prefs.experience_level,
|
804 |
-
# breed_info.get('Temperament', '')
|
805 |
-
# ),
|
806 |
-
# 'health': calculate_health_score(breed_info.get('Breed', '')),
|
807 |
-
# 'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
808 |
-
# }
|
809 |
-
|
810 |
-
|
811 |
-
# # 優化權重配置
|
812 |
-
# weights = {
|
813 |
-
# 'space': 0.28,
|
814 |
-
# 'exercise': 0.18,
|
815 |
-
# 'grooming': 0.12,
|
816 |
-
# 'experience': 0.22,
|
817 |
-
# 'health': 0.12,
|
818 |
-
# 'noise': 0.08
|
819 |
-
# }
|
820 |
-
|
821 |
-
# # 計算加權總分
|
822 |
-
# weighted_score = sum(score * weights[category] for category, score in scores.items())
|
823 |
-
|
824 |
-
# def amplify_score(score):
|
825 |
-
# """
|
826 |
-
# 優化分數放大函數,確保分數範圍合理且結果一致
|
827 |
-
# """
|
828 |
-
# # 基礎調整
|
829 |
-
# adjusted = (score - 0.35) * 1.8
|
830 |
-
|
831 |
-
# # 使用 3.2 次方使曲線更平滑
|
832 |
-
# amplified = pow(adjusted, 3.2) / 5.8 + score
|
833 |
-
|
834 |
-
# # 特別處理高分區間,確保不超過95%
|
835 |
-
# if amplified > 0.90:
|
836 |
-
# # 壓縮高分區間,確保最高到95%
|
837 |
-
# amplified = 0.90 + (amplified - 0.90) * 0.5
|
838 |
-
|
839 |
-
# # 確保最終分數在合理範圍內(0.55-0.95)
|
840 |
-
# final_score = max(0.55, min(0.95, amplified))
|
841 |
-
|
842 |
-
# # 四捨五入到小數點後第三位
|
843 |
-
# return round(final_score, 3)
|
844 |
-
|
845 |
-
# final_score = amplify_score(weighted_score)
|
846 |
-
|
847 |
-
# # 四捨五入所有分數
|
848 |
-
# scores = {k: round(v, 4) for k, v in scores.items()}
|
849 |
-
# scores['overall'] = round(final_score, 4)
|
850 |
-
|
851 |
-
# return scores
|
852 |
-
|
853 |
# 計算所有基礎分數
|
854 |
scores = {
|
855 |
'space': calculate_space_score(
|
@@ -875,56 +543,52 @@ def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences)
|
|
875 |
'health': calculate_health_score(breed_info.get('Breed', '')),
|
876 |
'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
877 |
}
|
878 |
-
|
879 |
-
# 2. 計算品種加分
|
880 |
-
if user_prefs.has_children:
|
881 |
-
scores['family_safety'] = calculate_family_safety_score(breed_info, user_prefs.children_age)
|
882 |
-
weights = {
|
883 |
-
'space': 0.22,
|
884 |
-
'exercise': 0.15,
|
885 |
-
'grooming': 0.10,
|
886 |
-
'experience': 0.20,
|
887 |
-
'health': 0.10,
|
888 |
-
'noise': 0.08,
|
889 |
-
'family_safety': 0.15
|
890 |
-
}
|
891 |
-
else:
|
892 |
-
weights = {
|
893 |
-
'space': 0.28,
|
894 |
-
'exercise': 0.18,
|
895 |
-
'grooming': 0.12,
|
896 |
-
'experience': 0.22,
|
897 |
-
'health': 0.12,
|
898 |
-
'noise': 0.08
|
899 |
-
}
|
900 |
|
901 |
-
# 3. 計算加權分數
|
902 |
-
weighted_score = sum(score * weights[category] for category, score in scores.items())
|
903 |
|
904 |
-
#
|
905 |
-
|
906 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
907 |
|
908 |
-
#
|
909 |
-
|
910 |
-
adjusted = (score - 0.3) * 1.6
|
911 |
-
amplified = pow(adjusted, 2.5) / 4.0 + score
|
912 |
-
return max(0.45, min(0.95, amplified))
|
913 |
|
914 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
915 |
|
916 |
-
|
|
|
|
|
917 |
scores = {k: round(v, 4) for k, v in scores.items()}
|
918 |
scores['overall'] = round(final_score, 4)
|
919 |
-
|
920 |
-
return scores
|
921 |
|
922 |
-
|
923 |
-
# print(f"Error details: {str(e)}")
|
924 |
-
# print(f"breed_info: {breed_info}")
|
925 |
-
# # print(f"Error in calculate_compatibility_score: {str(e)}")
|
926 |
-
# return {k: 0.5 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|
927 |
|
928 |
except Exception as e:
|
929 |
-
print(f"Error
|
930 |
-
|
|
|
|
|
|
206 |
return factors
|
207 |
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
|
210 |
"""計算品種與使用者條件的相容性分數的優化版本"""
|
211 |
try:
|
|
|
294 |
return base_score
|
295 |
|
296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
|
298 |
+
"""
|
299 |
+
計算使用者經驗與品種需求的匹配分數
|
300 |
+
|
301 |
+
參數說明:
|
302 |
+
care_level: 品種的照顧難度 ("High", "Moderate", "Low")
|
303 |
+
user_experience: 使用者經驗等級 ("beginner", "intermediate", "advanced")
|
304 |
+
temperament: 品種的性格特徵描述
|
305 |
+
|
306 |
+
返回:
|
307 |
+
float: 0.2-1.0 之間的匹配分數
|
308 |
+
"""
|
309 |
+
# 基礎分數矩陣 - 更大的分數差異來反映經驗重要性
|
310 |
base_scores = {
|
311 |
"High": {
|
312 |
+
"beginner": 0.12, # 降低起始分,反映高難度品種對新手的挑戰
|
313 |
+
"intermediate": 0.65, # 中級玩家可以應付,但仍有改善空間
|
314 |
+
"advanced": 1.0 # 資深者能完全勝任
|
315 |
},
|
316 |
"Moderate": {
|
317 |
+
"beginner": 0.35, # 適中難度對新手來說仍具挑戰
|
318 |
+
"intermediate": 0.82, # 中級玩家有很好的勝任能力
|
319 |
+
"advanced": 1.0 # 資深者完全勝任
|
320 |
},
|
321 |
"Low": {
|
322 |
+
"beginner": 0.72, # 低難度品種適合新手
|
323 |
+
"intermediate": 0.92, # 中級玩家幾乎完全勝���
|
324 |
+
"advanced": 1.0 # 資深者完全勝任
|
325 |
}
|
326 |
}
|
327 |
|
328 |
+
# 取得基礎分數
|
329 |
+
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
|
330 |
|
331 |
+
# 性格特徵評估 - 根據經驗等級調整權重
|
332 |
temperament_lower = temperament.lower()
|
333 |
+
temperament_adjustments = 0.0
|
334 |
+
|
335 |
+
if user_experience == "beginner":
|
336 |
+
# 新手不適合的特徵 - 更嚴格的懲罰
|
337 |
+
difficult_traits = {
|
338 |
+
'stubborn': -0.15, # 加重固執的懲罰
|
339 |
+
'independent': -0.12, # 加重獨立性的懲罰
|
340 |
+
'dominant': -0.12, # 加重支配性的懲罰
|
341 |
+
'strong-willed': -0.10, # 加重強勢的懲罰
|
342 |
+
'protective': -0.08, # 加重保護性的懲罰
|
343 |
+
'aloof': -0.08, # 加重冷漠的懲罰
|
344 |
+
'energetic': -0.06 # 輕微懲罰高能量
|
345 |
+
}
|
346 |
+
|
347 |
+
# 新手友善的特徵 - 提供更多獎勵
|
348 |
+
easy_traits = {
|
349 |
+
'gentle': 0.08, # 增加溫和的獎勵
|
350 |
+
'friendly': 0.08, # 增加友善的獎勵
|
351 |
+
'eager to please': 0.08, # 增加順從的獎勵
|
352 |
+
'patient': 0.06, # 獎勵耐心
|
353 |
+
'adaptable': 0.06, # 獎勵適應性
|
354 |
+
'calm': 0.05 # 獎勵冷靜
|
355 |
+
}
|
356 |
+
|
357 |
+
# 計算特徵調整
|
358 |
+
for trait, penalty in difficult_traits.items():
|
359 |
+
if trait in temperament_lower:
|
360 |
+
temperament_adjustments += penalty * 1.2 # 加重新手的懲罰
|
361 |
+
|
362 |
+
for trait, bonus in easy_traits.items():
|
363 |
+
if trait in temperament_lower:
|
364 |
+
temperament_adjustments += bonus
|
365 |
+
|
366 |
+
# 品種特殊調整
|
367 |
+
if any(term in temperament_lower for term in ['terrier', 'working', 'guard']):
|
368 |
+
temperament_adjustments -= 0.12 # 加重對特定類型品種的懲罰
|
369 |
+
|
370 |
+
elif user_experience == "intermediate":
|
371 |
+
# 中級玩家的調整更加平衡
|
372 |
+
moderate_traits = {
|
373 |
+
'intelligent': 0.05, # 獎勵聰明
|
374 |
+
'athletic': 0.04, # 獎勵運動能力
|
375 |
+
'versatile': 0.04, # 獎勵多功能性
|
376 |
+
'stubborn': -0.06, # 輕微懲罰固執
|
377 |
+
'independent': -0.05, # 輕微懲罰獨立性
|
378 |
+
'protective': -0.04 # 輕微懲罰保護性
|
379 |
+
}
|
380 |
+
|
381 |
+
for trait, adjustment in moderate_traits.items():
|
382 |
+
if trait in temperament_lower:
|
383 |
+
temperament_adjustments += adjustment
|
384 |
+
|
385 |
+
else: # advanced
|
386 |
+
# 資深玩家能夠應對挑戰性特徵
|
387 |
+
advanced_traits = {
|
388 |
+
'stubborn': 0.04, # 反轉為優勢
|
389 |
+
'independent': 0.04, # 反轉為優勢
|
390 |
+
'intelligent': 0.05, # 獎勵聰明
|
391 |
+
'protective': 0.04, # 獎勵保護性
|
392 |
+
'strong-willed': 0.03 # 獎勵強勢
|
393 |
+
}
|
394 |
+
|
395 |
+
for trait, bonus in advanced_traits.items():
|
396 |
+
if trait in temperament_lower:
|
397 |
+
temperament_adjustments += bonus
|
398 |
|
399 |
+
# 確保最終分數在合理範圍內
|
400 |
+
final_score = max(0.2, min(1.0, score + temperament_adjustments))
|
401 |
+
return final_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
|
404 |
def calculate_health_score(breed_name: str) -> float:
|
|
|
518 |
|
519 |
return max(0.2, min(1.0, final_score))
|
520 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
521 |
# 計算所有基礎分數
|
522 |
scores = {
|
523 |
'space': calculate_space_score(
|
|
|
543 |
'health': calculate_health_score(breed_info.get('Breed', '')),
|
544 |
'noise': calculate_noise_score(breed_info.get('Breed', ''), user_prefs.noise_tolerance)
|
545 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
|
|
|
|
|
547 |
|
548 |
+
# 優化權重配置
|
549 |
+
weights = {
|
550 |
+
'space': 0.28,
|
551 |
+
'exercise': 0.18,
|
552 |
+
'grooming': 0.12,
|
553 |
+
'experience': 0.22,
|
554 |
+
'health': 0.12,
|
555 |
+
'noise': 0.08
|
556 |
+
}
|
557 |
|
558 |
+
# 計算加權總分
|
559 |
+
weighted_score = sum(score * weights[category] for category, score in scores.items())
|
|
|
|
|
|
|
560 |
|
561 |
+
def amplify_score(score):
|
562 |
+
"""
|
563 |
+
優化分數放大函數,確保分數範圍合理且結果一致
|
564 |
+
"""
|
565 |
+
# 基礎調整
|
566 |
+
adjusted = (score - 0.35) * 1.8
|
567 |
+
|
568 |
+
# 使用 3.2 次方使曲線更平滑
|
569 |
+
amplified = pow(adjusted, 3.2) / 5.8 + score
|
570 |
+
|
571 |
+
# 特別處理高分區間,確保不超過95%
|
572 |
+
if amplified > 0.90:
|
573 |
+
# 壓縮高分區間,確保最高到95%
|
574 |
+
amplified = 0.90 + (amplified - 0.90) * 0.5
|
575 |
+
|
576 |
+
# 確保最終分數在合理範圍內(0.55-0.95)
|
577 |
+
final_score = max(0.55, min(0.95, amplified))
|
578 |
+
|
579 |
+
# 四捨五入到小數點後第三位
|
580 |
+
return round(final_score, 3)
|
581 |
|
582 |
+
final_score = amplify_score(weighted_score)
|
583 |
+
|
584 |
+
# 四捨五入所有分數
|
585 |
scores = {k: round(v, 4) for k, v in scores.items()}
|
586 |
scores['overall'] = round(final_score, 4)
|
|
|
|
|
587 |
|
588 |
+
return scores
|
|
|
|
|
|
|
|
|
589 |
|
590 |
except Exception as e:
|
591 |
+
print(f"Error details: {str(e)}")
|
592 |
+
print(f"breed_info: {breed_info}")
|
593 |
+
# print(f"Error in calculate_compatibility_score: {str(e)}")
|
594 |
+
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
|