Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -250,8 +250,9 @@ def get_akc_breeds_link():
|
|
250 |
# iface.launch()
|
251 |
|
252 |
|
|
|
|
|
253 |
def format_description(description, breed):
|
254 |
-
# 分別將不同的屬性分開來顯示,保持結果的可讀性
|
255 |
if isinstance(description, dict):
|
256 |
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
257 |
else:
|
@@ -259,12 +260,9 @@ def format_description(description, breed):
|
|
259 |
|
260 |
formatted_description = f"""
|
261 |
**Breed**: {breed}
|
262 |
-
|
263 |
{formatted_description}
|
264 |
-
|
265 |
**Want to learn more about dog breeds?**
|
266 |
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
|
267 |
-
|
268 |
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
|
269 |
You may need to search for the specific breed on that page.
|
270 |
I am not responsible for the content on external sites.
|
@@ -274,9 +272,9 @@ Please refer to the AKC's terms of use and privacy policy.*
|
|
274 |
|
275 |
|
276 |
async def predict_single_dog(image):
|
277 |
-
# 單一品種直接預測,避免 YOLO
|
278 |
return await asyncio.to_thread(_predict_single_dog, image)
|
279 |
|
|
|
280 |
def _predict_single_dog(image):
|
281 |
image_tensor = preprocess_image(image)
|
282 |
with torch.no_grad():
|
@@ -289,22 +287,26 @@ def _predict_single_dog(image):
|
|
289 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
290 |
return top1_prob, topk_breeds, topk_probs_percent
|
291 |
|
|
|
292 |
async def detect_multiple_dogs(image):
|
293 |
-
# 檢測多隻狗時使用 YOLO
|
294 |
return await asyncio.to_thread(_detect_multiple_dogs, image)
|
295 |
|
296 |
-
|
297 |
-
|
|
|
|
|
298 |
dogs = []
|
299 |
for result in results:
|
300 |
for box in result.boxes:
|
301 |
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
302 |
xyxy = box.xyxy[0].tolist()
|
303 |
confidence = box.conf.item()
|
304 |
-
|
305 |
-
|
|
|
306 |
return dogs
|
307 |
|
|
|
308 |
async def predict(image):
|
309 |
if image is None:
|
310 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
@@ -313,11 +315,9 @@ async def predict(image):
|
|
313 |
if isinstance(image, np.ndarray):
|
314 |
image = Image.fromarray(image)
|
315 |
|
316 |
-
# 首先檢查圖片中是否有多隻狗
|
317 |
dogs = await detect_multiple_dogs(image)
|
318 |
|
319 |
if len(dogs) == 0:
|
320 |
-
# 單狗直接分類
|
321 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
322 |
if top1_prob < 0.2:
|
323 |
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
@@ -326,19 +326,28 @@ async def predict(image):
|
|
326 |
formatted_description = format_description(description, breed)
|
327 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
explanations = []
|
330 |
visible_buttons = []
|
331 |
annotated_image = image.copy()
|
332 |
draw = ImageDraw.Draw(annotated_image)
|
|
|
333 |
|
334 |
-
#
|
335 |
for i, (cropped_image, _, box) in enumerate(dogs):
|
336 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
337 |
|
338 |
-
#
|
339 |
-
color = ["red", "blue", "green", "yellow"][i % 4]
|
340 |
draw.rectangle(box, outline=color, width=3)
|
341 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color)
|
342 |
|
343 |
if top1_prob >= 0.5:
|
344 |
breed = topk_breeds[0]
|
@@ -352,21 +361,21 @@ Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds
|
|
352 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
353 |
"""
|
354 |
explanations.append(explanation)
|
355 |
-
# 將 Top3 選項顯示在該狗的下方
|
356 |
visible_buttons.extend([f"More about Dog {i+1}: {topk_breeds[0]}", f"More about Dog {i+1}: {topk_breeds[1]}", f"More about Dog {i+1}: {topk_breeds[2]}"])
|
357 |
else:
|
358 |
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
359 |
|
360 |
final_explanation = "\n\n".join(explanations)
|
361 |
-
return final_explanation, annotated_image, gr.update(visible=
|
362 |
|
363 |
except Exception as e:
|
364 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
365 |
|
|
|
366 |
async def show_details(choice):
|
367 |
if not choice:
|
368 |
return "Please select a breed to view details."
|
369 |
-
|
370 |
try:
|
371 |
if "Dog" in choice:
|
372 |
_, breed = choice.split(": ", 1)
|
@@ -378,6 +387,7 @@ async def show_details(choice):
|
|
378 |
return f"An error occurred while showing details: {e}"
|
379 |
|
380 |
|
|
|
381 |
with gr.Blocks(css="""
|
382 |
.container { max-width: 900px; margin: auto; padding: 20px; }
|
383 |
.gr-box { border-radius: 15px; }
|
|
|
250 |
# iface.launch()
|
251 |
|
252 |
|
253 |
+
|
254 |
+
# Update the format_description to handle descriptions more cleanly
|
255 |
def format_description(description, breed):
|
|
|
256 |
if isinstance(description, dict):
|
257 |
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
258 |
else:
|
|
|
260 |
|
261 |
formatted_description = f"""
|
262 |
**Breed**: {breed}
|
|
|
263 |
{formatted_description}
|
|
|
264 |
**Want to learn more about dog breeds?**
|
265 |
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
|
|
|
266 |
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
|
267 |
You may need to search for the specific breed on that page.
|
268 |
I am not responsible for the content on external sites.
|
|
|
272 |
|
273 |
|
274 |
async def predict_single_dog(image):
|
|
|
275 |
return await asyncio.to_thread(_predict_single_dog, image)
|
276 |
|
277 |
+
|
278 |
def _predict_single_dog(image):
|
279 |
image_tensor = preprocess_image(image)
|
280 |
with torch.no_grad():
|
|
|
287 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
288 |
return top1_prob, topk_breeds, topk_probs_percent
|
289 |
|
290 |
+
|
291 |
async def detect_multiple_dogs(image):
|
|
|
292 |
return await asyncio.to_thread(_detect_multiple_dogs, image)
|
293 |
|
294 |
+
|
295 |
+
def _detect_multiple_dogs(image, conf_threshold=0.3):
|
296 |
+
# 調整 YOLO 模型的置信度閾值
|
297 |
+
results = model_yolo(image, conf=conf_threshold)
|
298 |
dogs = []
|
299 |
for result in results:
|
300 |
for box in result.boxes:
|
301 |
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
302 |
xyxy = box.xyxy[0].tolist()
|
303 |
confidence = box.conf.item()
|
304 |
+
if confidence >= conf_threshold: # 只保留置信度高於閾值的框
|
305 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
306 |
+
dogs.append((cropped_image, confidence, xyxy))
|
307 |
return dogs
|
308 |
|
309 |
+
|
310 |
async def predict(image):
|
311 |
if image is None:
|
312 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
315 |
if isinstance(image, np.ndarray):
|
316 |
image = Image.fromarray(image)
|
317 |
|
|
|
318 |
dogs = await detect_multiple_dogs(image)
|
319 |
|
320 |
if len(dogs) == 0:
|
|
|
321 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
322 |
if top1_prob < 0.2:
|
323 |
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
326 |
formatted_description = format_description(description, breed)
|
327 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
328 |
|
329 |
+
if len(dogs) == 1:
|
330 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
331 |
+
breed = topk_breeds[0]
|
332 |
+
description = get_dog_description(breed)
|
333 |
+
formatted_description = format_description(description, breed)
|
334 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
335 |
+
|
336 |
+
# Colors and fonts for multiple dogs
|
337 |
+
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
338 |
explanations = []
|
339 |
visible_buttons = []
|
340 |
annotated_image = image.copy()
|
341 |
draw = ImageDraw.Draw(annotated_image)
|
342 |
+
font = ImageFont.load_default()
|
343 |
|
344 |
+
# Process each dog detected by YOLO
|
345 |
for i, (cropped_image, _, box) in enumerate(dogs):
|
346 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
347 |
|
348 |
+
color = color_list[i % len(color_list)] # Cycle through colors
|
|
|
349 |
draw.rectangle(box, outline=color, width=3)
|
350 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
351 |
|
352 |
if top1_prob >= 0.5:
|
353 |
breed = topk_breeds[0]
|
|
|
361 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
362 |
"""
|
363 |
explanations.append(explanation)
|
|
|
364 |
visible_buttons.extend([f"More about Dog {i+1}: {topk_breeds[0]}", f"More about Dog {i+1}: {topk_breeds[1]}", f"More about Dog {i+1}: {topk_breeds[2]}"])
|
365 |
else:
|
366 |
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
367 |
|
368 |
final_explanation = "\n\n".join(explanations)
|
369 |
+
return final_explanation, annotated_image, gr.update(visible=True, choices=visible_buttons), gr.update(visible=False), gr.update(visible=False)
|
370 |
|
371 |
except Exception as e:
|
372 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
373 |
|
374 |
+
|
375 |
async def show_details(choice):
|
376 |
if not choice:
|
377 |
return "Please select a breed to view details."
|
378 |
+
|
379 |
try:
|
380 |
if "Dog" in choice:
|
381 |
_, breed = choice.split(": ", 1)
|
|
|
387 |
return f"An error occurred while showing details: {e}"
|
388 |
|
389 |
|
390 |
+
|
391 |
with gr.Blocks(css="""
|
392 |
.container { max-width: 900px; margin: auto; padding: 20px; }
|
393 |
.gr-box { border-radius: 15px; }
|