DawnC commited on
Commit
490ef3a
1 Parent(s): 4486636

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -114
app.py CHANGED
@@ -284,7 +284,7 @@ def _predict_single_dog(image):
284
  return top1_prob, topk_breeds, topk_probs_percent
285
 
286
 
287
- async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5):
288
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
289
  dogs = []
290
  for box in results.boxes:
@@ -296,118 +296,6 @@ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.5):
296
  return dogs
297
 
298
 
299
- # async def predict(image):
300
- # if image is None:
301
- # return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
302
-
303
- # try:
304
- # if isinstance(image, np.ndarray):
305
- # image = Image.fromarray(image)
306
-
307
- # # 嘗試檢測多隻狗
308
- # dogs = await detect_multiple_dogs(image)
309
- # if len(dogs) == 0:
310
- # # 單狗情境
311
- # top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
312
- # if top1_prob < 0.2:
313
- # return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
314
-
315
- # breed = topk_breeds[0]
316
- # description = get_dog_description(breed)
317
-
318
- # if top1_prob >= 0.5:
319
- # formatted_description = format_description(description, breed)
320
- # return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
321
- # else:
322
- # explanation = (
323
- # f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
324
- # f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
325
- # f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
326
- # f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
327
- # "Click on a button to view more information about the breed."
328
- # )
329
- # return explanation, image, gr.update(visible=True, value=f"More about {topk_breeds[0]}"), gr.update(visible=True, value=f"More about {topk_breeds[1]}"), gr.update(visible=True, value=f"More about {topk_breeds[2]}")
330
-
331
- # # 多狗情境
332
- # color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
333
- # explanations = []
334
- # annotated_image = image.copy()
335
- # draw = ImageDraw.Draw(annotated_image)
336
- # font = ImageFont.load_default()
337
-
338
- # for i, (cropped_image, _, box) in enumerate(dogs):
339
- # top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
340
- # color = color_list[i % len(color_list)]
341
- # draw.rectangle(box, outline=color, width=3)
342
- # draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
343
-
344
- # breed = topk_breeds[0]
345
- # if top1_prob >= 0.5:
346
- # description = get_dog_description(breed)
347
- # formatted_description = format_description(description, breed)
348
- # explanations.append(f"Dog {i+1}: {formatted_description}")
349
- # elif top1_prob >= 0.2:
350
- # explanations.append(f"Dog {i+1}: Top 3 possible breeds:\n"
351
- # f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
352
- # f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
353
- # f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)")
354
- # else:
355
- # explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
356
-
357
- # final_explanation = "\n\n".join(explanations)
358
- # return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
359
-
360
- # except Exception as e:
361
- # return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
362
-
363
- # def show_details(choice):
364
- # if not choice:
365
- # return "Please select a breed to view details."
366
-
367
- # try:
368
- # breed = choice.split("More about ")[-1]
369
- # description = get_dog_description(breed)
370
- # return format_description(description, breed)
371
- # except Exception as e:
372
- # return f"An error occurred while showing details: {e}"
373
-
374
-
375
- # with gr.Blocks() as iface:
376
- # gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
377
- # gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
378
-
379
- # with gr.Row():
380
- # input_image = gr.Image(label="Upload a dog image", type="pil")
381
- # output_image = gr.Image(label="Annotated Image")
382
-
383
- # output = gr.Markdown(label="Prediction Results")
384
-
385
- # with gr.Row():
386
- # btn1 = gr.Button("View More 1", visible=False)
387
- # btn2 = gr.Button("View More 2", visible=False)
388
- # btn3 = gr.Button("View More 3", visible=False)
389
-
390
- # input_image.change(
391
- # predict,
392
- # inputs=input_image,
393
- # outputs=[output, output_image, btn1, btn2, btn3]
394
- # )
395
-
396
- # btn1.click(show_details, inputs=btn1, outputs=output)
397
- # btn2.click(show_details, inputs=btn2, outputs=output)
398
- # btn3.click(show_details, inputs=btn3, outputs=output)
399
-
400
- # gr.Examples(
401
- # examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
402
- # inputs=input_image
403
- # )
404
-
405
- # gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
406
-
407
- # if __name__ == "__main__":
408
- # iface.launch()
409
-
410
-
411
  async def predict(image):
412
  if image is None:
413
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
@@ -416,7 +304,7 @@ async def predict(image):
416
  if isinstance(image, np.ndarray):
417
  image = Image.fromarray(image)
418
 
419
- dogs = await detect_multiple_dogs(image, conf_threshold=0.05)
420
 
421
  if len(dogs) <= 1:
422
  return await process_single_dog(image)
 
284
  return top1_prob, topk_breeds, topk_probs_percent
285
 
286
 
287
+ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
288
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
289
  dogs = []
290
  for box in results.boxes:
 
296
  return dogs
297
 
298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
  async def predict(image):
300
  if image is None:
301
  return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
 
304
  if isinstance(image, np.ndarray):
305
  image = Image.fromarray(image)
306
 
307
+ dogs = await detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5)
308
 
309
  if len(dogs) <= 1:
310
  return await process_single_dog(image)