Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -312,7 +312,7 @@ def _predict_single_dog(image):
|
|
312 |
# return dogs
|
313 |
# 此為如果後面調不好 使用的版本
|
314 |
|
315 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
316 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
317 |
dogs = []
|
318 |
for box in results.boxes:
|
@@ -320,42 +320,31 @@ async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
|
|
320 |
xyxy = box.xyxy[0].tolist()
|
321 |
confidence = box.conf.item()
|
322 |
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
323 |
-
|
|
|
324 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
325 |
dogs.append((cropped_image, confidence, xyxy))
|
326 |
|
327 |
-
#
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
return dogs
|
331 |
|
332 |
-
def
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
while i < len(dogs):
|
338 |
-
if calculate_iou(base[2], dogs[i][2]) > iou_threshold:
|
339 |
-
# 合併重疊的框
|
340 |
-
base = merge_boxes(base, dogs.pop(i))
|
341 |
-
else:
|
342 |
-
i += 1
|
343 |
-
merged_dogs.append(base)
|
344 |
-
return merged_dogs
|
345 |
-
|
346 |
-
def merge_boxes(box1, box2):
|
347 |
-
xyxy1, conf1, _ = box1
|
348 |
-
xyxy2, conf2, _ = box2
|
349 |
-
merged_xyxy = [
|
350 |
-
min(xyxy1[0], xyxy2[0]),
|
351 |
-
min(xyxy1[1], xyxy2[1]),
|
352 |
-
max(xyxy1[2], xyxy2[2]),
|
353 |
-
max(xyxy1[3], xyxy2[3])
|
354 |
-
]
|
355 |
-
merged_conf = max(conf1, conf2)
|
356 |
-
merged_image = Image.new('RGB', (int(merged_xyxy[2] - merged_xyxy[0]), int(merged_xyxy[3] - merged_xyxy[1])))
|
357 |
-
merged_image.paste(box1[0], (0, 0))
|
358 |
-
return (merged_image, merged_conf, merged_xyxy)
|
359 |
|
360 |
def calculate_iou(box1, box2):
|
361 |
# 計算兩個邊界框的交集面積
|
@@ -494,15 +483,15 @@ async def predict(image):
|
|
494 |
image = Image.fromarray(image)
|
495 |
|
496 |
dogs = await detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5)
|
497 |
-
|
498 |
-
# 如果檢測到的狗的數量不合理,嘗試調整參數重新檢測
|
499 |
-
if len(dogs) > 5 or (len(dogs) == 0 and has_dog_features(image)):
|
500 |
-
dogs = await detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.4)
|
501 |
-
|
502 |
if len(dogs) == 0:
|
503 |
return await process_single_dog(image)
|
504 |
elif len(dogs) == 1:
|
505 |
-
|
|
|
|
|
|
|
|
|
506 |
else:
|
507 |
# 多狗情境
|
508 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
@@ -558,12 +547,13 @@ async def predict(image):
|
|
558 |
print(error_msg) # 添加日誌輸出
|
559 |
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
560 |
|
561 |
-
def
|
562 |
-
#
|
563 |
# 這裡可以使用更複雜的方法,如特徵提取或輕量級模型
|
564 |
gray = image.convert('L')
|
565 |
edges = gray.filter(ImageFilter.FIND_EDGES)
|
566 |
-
|
|
|
567 |
|
568 |
async def process_single_dog(image):
|
569 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
|
|
312 |
# return dogs
|
313 |
# 此為如果後面調不好 使用的版本
|
314 |
|
315 |
+
async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.3):
|
316 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
317 |
dogs = []
|
318 |
for box in results.boxes:
|
|
|
320 |
xyxy = box.xyxy[0].tolist()
|
321 |
confidence = box.conf.item()
|
322 |
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
323 |
+
image_area = image.width * image.height
|
324 |
+
if area > 0.01 * image_area: # 過濾掉太小的檢測框,但使用相對面積
|
325 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
326 |
dogs.append((cropped_image, confidence, xyxy))
|
327 |
|
328 |
+
# 如果檢測到的狗太少,嘗試降低閾值再次檢測
|
329 |
+
if len(dogs) < 2:
|
330 |
+
results = model_yolo(image, conf=conf_threshold/2, iou=iou_threshold)[0]
|
331 |
+
for box in results.boxes:
|
332 |
+
if box.cls == 16:
|
333 |
+
xyxy = box.xyxy[0].tolist()
|
334 |
+
confidence = box.conf.item()
|
335 |
+
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
336 |
+
image_area = image.width * image.height
|
337 |
+
if area > 0.01 * image_area and not is_box_duplicate(xyxy, [d[2] for d in dogs]):
|
338 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
339 |
+
dogs.append((cropped_image, confidence, xyxy))
|
340 |
|
341 |
return dogs
|
342 |
|
343 |
+
def is_box_duplicate(new_box, existing_boxes, iou_threshold=0.5):
|
344 |
+
for box in existing_boxes:
|
345 |
+
if calculate_iou(new_box, box) > iou_threshold:
|
346 |
+
return True
|
347 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
349 |
def calculate_iou(box1, box2):
|
350 |
# 計算兩個邊界框的交集面積
|
|
|
483 |
image = Image.fromarray(image)
|
484 |
|
485 |
dogs = await detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5)
|
486 |
+
|
|
|
|
|
|
|
|
|
487 |
if len(dogs) == 0:
|
488 |
return await process_single_dog(image)
|
489 |
elif len(dogs) == 1:
|
490 |
+
# 如果只檢測到一隻狗,但圖像可能包含多隻狗,再次嘗試檢測
|
491 |
+
if has_multiple_dogs(image):
|
492 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.2)
|
493 |
+
if len(dogs) == 1:
|
494 |
+
return await process_single_dog(dogs[0][0])
|
495 |
else:
|
496 |
# 多狗情境
|
497 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
|
|
547 |
print(error_msg) # 添加日誌輸出
|
548 |
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
549 |
|
550 |
+
def has_multiple_dogs(image):
|
551 |
+
# 使用簡單的啟發式方法來檢查圖像是否可能包含多隻狗
|
552 |
# 這裡可以使用更複雜的方法,如特徵提取或輕量級模型
|
553 |
gray = image.convert('L')
|
554 |
edges = gray.filter(ImageFilter.FIND_EDGES)
|
555 |
+
edge_pixels = np.array(edges)
|
556 |
+
return np.sum(edge_pixels > 128) > image.width * image.height * 0.1 # 假設邊緣像素比例大於 10% 表示可能有多隻狗
|
557 |
|
558 |
async def process_single_dog(image):
|
559 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|