Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -251,7 +251,6 @@ def get_akc_breeds_link():
|
|
251 |
|
252 |
|
253 |
def format_description(description, breed):
|
254 |
-
# 分別將不同的屬性分開來顯示,保持結果的可讀性
|
255 |
if isinstance(description, dict):
|
256 |
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
257 |
else:
|
@@ -260,10 +259,8 @@ def format_description(description, breed):
|
|
260 |
formatted_description = f"""
|
261 |
**Breed**: {breed}
|
262 |
{formatted_description}
|
263 |
-
|
264 |
**Want to learn more about dog breeds?**
|
265 |
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
|
266 |
-
|
267 |
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
|
268 |
You may need to search for the specific breed on that page.
|
269 |
I am not responsible for the content on external sites.
|
@@ -271,12 +268,12 @@ Please refer to the AKC's terms of use and privacy policy.*
|
|
271 |
"""
|
272 |
return formatted_description
|
273 |
|
|
|
274 |
async def predict_single_dog(image):
|
275 |
-
#
|
276 |
return await asyncio.to_thread(_predict_single_dog, image)
|
277 |
|
278 |
def _predict_single_dog(image):
|
279 |
-
# 直接使用模型進行預測,無需通過 YOLO
|
280 |
image_tensor = preprocess_image(image)
|
281 |
with torch.no_grad():
|
282 |
output = model(image_tensor)
|
@@ -289,11 +286,9 @@ def _predict_single_dog(image):
|
|
289 |
return top1_prob, topk_breeds, topk_probs_percent
|
290 |
|
291 |
async def detect_multiple_dogs(image):
|
292 |
-
# 使用 asyncio.to_thread 將同步操作轉換為異步
|
293 |
return await asyncio.to_thread(_detect_multiple_dogs, image)
|
294 |
|
295 |
def _detect_multiple_dogs(image):
|
296 |
-
# 使用 YOLO 檢測多隻狗
|
297 |
results = model_yolo(image)
|
298 |
dogs = []
|
299 |
for result in results:
|
@@ -313,11 +308,9 @@ async def predict(image):
|
|
313 |
if isinstance(image, np.ndarray):
|
314 |
image = Image.fromarray(image)
|
315 |
|
316 |
-
# 首先檢查圖片中是否有多隻狗
|
317 |
dogs = await detect_multiple_dogs(image)
|
318 |
|
319 |
if len(dogs) == 0:
|
320 |
-
# 沒有狗或 YOLO 未檢測到狗,使用單狗直接分類
|
321 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
322 |
if top1_prob < 0.2:
|
323 |
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
@@ -327,14 +320,12 @@ async def predict(image):
|
|
327 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
328 |
|
329 |
if len(dogs) == 1:
|
330 |
-
# 檢測到一隻狗時,直接分類不使用 YOLO 來節省時間
|
331 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
332 |
breed = topk_breeds[0]
|
333 |
description = get_dog_description(breed)
|
334 |
formatted_description = format_description(description, breed)
|
335 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
336 |
|
337 |
-
# 若有多隻狗,則使用 YOLO 的檢測結果來處理
|
338 |
explanations = []
|
339 |
visible_buttons = []
|
340 |
annotated_image = image.copy()
|
@@ -382,6 +373,7 @@ async def show_details(choice):
|
|
382 |
except Exception as e:
|
383 |
return f"An error occurred while showing details: {e}"
|
384 |
|
|
|
385 |
with gr.Blocks(css="""
|
386 |
.container { max-width: 900px; margin: auto; padding: 20px; }
|
387 |
.gr-box { border-radius: 15px; }
|
|
|
251 |
|
252 |
|
253 |
def format_description(description, breed):
|
|
|
254 |
if isinstance(description, dict):
|
255 |
formatted_description = "\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
256 |
else:
|
|
|
259 |
formatted_description = f"""
|
260 |
**Breed**: {breed}
|
261 |
{formatted_description}
|
|
|
262 |
**Want to learn more about dog breeds?**
|
263 |
[Visit the AKC dog breeds page]({get_akc_breeds_link()}) and search for {breed} to find detailed information.
|
|
|
264 |
*Disclaimer: The external link provided leads to the American Kennel Club (AKC) dog breeds page.
|
265 |
You may need to search for the specific breed on that page.
|
266 |
I am not responsible for the content on external sites.
|
|
|
268 |
"""
|
269 |
return formatted_description
|
270 |
|
271 |
+
|
272 |
async def predict_single_dog(image):
|
273 |
+
# 直接使用模型進行預測,無需通過 YOLO
|
274 |
return await asyncio.to_thread(_predict_single_dog, image)
|
275 |
|
276 |
def _predict_single_dog(image):
|
|
|
277 |
image_tensor = preprocess_image(image)
|
278 |
with torch.no_grad():
|
279 |
output = model(image_tensor)
|
|
|
286 |
return top1_prob, topk_breeds, topk_probs_percent
|
287 |
|
288 |
async def detect_multiple_dogs(image):
|
|
|
289 |
return await asyncio.to_thread(_detect_multiple_dogs, image)
|
290 |
|
291 |
def _detect_multiple_dogs(image):
|
|
|
292 |
results = model_yolo(image)
|
293 |
dogs = []
|
294 |
for result in results:
|
|
|
308 |
if isinstance(image, np.ndarray):
|
309 |
image = Image.fromarray(image)
|
310 |
|
|
|
311 |
dogs = await detect_multiple_dogs(image)
|
312 |
|
313 |
if len(dogs) == 0:
|
|
|
314 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
315 |
if top1_prob < 0.2:
|
316 |
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
320 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
321 |
|
322 |
if len(dogs) == 1:
|
|
|
323 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
324 |
breed = topk_breeds[0]
|
325 |
description = get_dog_description(breed)
|
326 |
formatted_description = format_description(description, breed)
|
327 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
328 |
|
|
|
329 |
explanations = []
|
330 |
visible_buttons = []
|
331 |
annotated_image = image.copy()
|
|
|
373 |
except Exception as e:
|
374 |
return f"An error occurred while showing details: {e}"
|
375 |
|
376 |
+
|
377 |
with gr.Blocks(css="""
|
378 |
.container { max-width: 900px; margin: auto; padding: 20px; }
|
379 |
.gr-box { border-radius: 15px; }
|