Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -194,7 +194,7 @@ async def predict_single_dog(image):
|
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
|
197 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
199 |
dogs = []
|
200 |
boxes = []
|
@@ -208,22 +208,47 @@ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
|
|
208 |
if not boxes:
|
209 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
210 |
else:
|
211 |
-
#
|
212 |
sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
213 |
|
214 |
-
|
|
|
|
|
|
|
215 |
x1, y1, x2, y2 = box
|
216 |
-
#
|
217 |
w, h = x2 - x1, y2 - y1
|
218 |
-
x1 = max(0, x1 - w * 0.
|
219 |
-
y1 = max(0, y1 - h * 0.
|
220 |
-
x2 = min(image.width, x2 + w * 0.
|
221 |
-
y2 = min(image.height, y2 + h * 0.
|
222 |
cropped_image = image.crop((x1, y1, x2, y2))
|
223 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
224 |
|
225 |
return dogs
|
226 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
async def process_single_dog(image):
|
229 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
|
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
|
197 |
+
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.3):
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
199 |
dogs = []
|
200 |
boxes = []
|
|
|
208 |
if not boxes:
|
209 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
210 |
else:
|
211 |
+
# 按置信度排序
|
212 |
sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
213 |
|
214 |
+
# 使用非極大值抑制(NMS)來合併重疊的框
|
215 |
+
nms_boxes = non_max_suppression(sorted_boxes, iou_threshold)
|
216 |
+
|
217 |
+
for box, confidence in nms_boxes:
|
218 |
x1, y1, x2, y2 = box
|
219 |
+
# 擴大框的大小以包含更多上下文
|
220 |
w, h = x2 - x1, y2 - y1
|
221 |
+
x1 = max(0, x1 - w * 0.15)
|
222 |
+
y1 = max(0, y1 - h * 0.15)
|
223 |
+
x2 = min(image.width, x2 + w * 0.15)
|
224 |
+
y2 = min(image.height, y2 + h * 0.15)
|
225 |
cropped_image = image.crop((x1, y1, x2, y2))
|
226 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
227 |
|
228 |
return dogs
|
229 |
|
230 |
+
def non_max_suppression(boxes, iou_threshold):
|
231 |
+
keep = []
|
232 |
+
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
233 |
+
while boxes:
|
234 |
+
current = boxes.pop(0)
|
235 |
+
keep.append(current)
|
236 |
+
boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
|
237 |
+
return keep
|
238 |
+
|
239 |
+
def calculate_iou(box1, box2):
|
240 |
+
x1 = max(box1[0], box2[0])
|
241 |
+
y1 = max(box1[1], box2[1])
|
242 |
+
x2 = min(box1[2], box2[2])
|
243 |
+
y2 = min(box1[3], box2[3])
|
244 |
+
|
245 |
+
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
246 |
+
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
247 |
+
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
248 |
+
|
249 |
+
iou = intersection / float(area1 + area2 - intersection)
|
250 |
+
return iou
|
251 |
+
|
252 |
|
253 |
async def process_single_dog(image):
|
254 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|