DawnC commited on
Commit
7393f93
1 Parent(s): 280eef2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -8
app.py CHANGED
@@ -194,7 +194,7 @@ async def predict_single_dog(image):
194
  return top1_prob, topk_breeds, topk_probs_percent
195
 
196
 
197
- async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
198
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
199
  dogs = []
200
  boxes = []
@@ -208,22 +208,47 @@ async def detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.45):
208
  if not boxes:
209
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
210
  else:
211
- # 按置信度排序並選擇所有框
212
  sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
213
 
214
- for box, confidence in sorted_boxes:
 
 
 
215
  x1, y1, x2, y2 = box
216
- # 擴大框的大小
217
  w, h = x2 - x1, y2 - y1
218
- x1 = max(0, x1 - w * 0.1)
219
- y1 = max(0, y1 - h * 0.1)
220
- x2 = min(image.width, x2 + w * 0.1)
221
- y2 = min(image.height, y2 + h * 0.1)
222
  cropped_image = image.crop((x1, y1, x2, y2))
223
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
224
 
225
  return dogs
226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
 
228
  async def process_single_dog(image):
229
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
 
194
  return top1_prob, topk_breeds, topk_probs_percent
195
 
196
 
197
+ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.3):
198
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
199
  dogs = []
200
  boxes = []
 
208
  if not boxes:
209
  dogs.append((image, 1.0, [0, 0, image.width, image.height]))
210
  else:
211
+ # 按置信度排序
212
  sorted_boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
213
 
214
+ # 使用非極大值抑制(NMS)來合併重疊的框
215
+ nms_boxes = non_max_suppression(sorted_boxes, iou_threshold)
216
+
217
+ for box, confidence in nms_boxes:
218
  x1, y1, x2, y2 = box
219
+ # 擴大框的大小以包含更多上下文
220
  w, h = x2 - x1, y2 - y1
221
+ x1 = max(0, x1 - w * 0.15)
222
+ y1 = max(0, y1 - h * 0.15)
223
+ x2 = min(image.width, x2 + w * 0.15)
224
+ y2 = min(image.height, y2 + h * 0.15)
225
  cropped_image = image.crop((x1, y1, x2, y2))
226
  dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
227
 
228
  return dogs
229
 
230
+ def non_max_suppression(boxes, iou_threshold):
231
+ keep = []
232
+ boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
233
+ while boxes:
234
+ current = boxes.pop(0)
235
+ keep.append(current)
236
+ boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
237
+ return keep
238
+
239
+ def calculate_iou(box1, box2):
240
+ x1 = max(box1[0], box2[0])
241
+ y1 = max(box1[1], box2[1])
242
+ x2 = min(box1[2], box2[2])
243
+ y2 = min(box1[3], box2[3])
244
+
245
+ intersection = max(0, x2 - x1) * max(0, y2 - y1)
246
+ area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
247
+ area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
248
+
249
+ iou = intersection / float(area1 + area2 - intersection)
250
+ return iou
251
+
252
 
253
  async def process_single_dog(image):
254
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)