Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -249,6 +249,7 @@ def get_akc_breeds_link():
|
|
249 |
# if __name__ == "__main__":
|
250 |
# iface.launch()
|
251 |
|
|
|
252 |
def format_description(description, breed, is_multi_dog=False, dog_number=None):
|
253 |
if isinstance(description, dict):
|
254 |
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items() if key != "Breed"])
|
@@ -271,7 +272,7 @@ Please refer to the AKC's terms of use and privacy policy.*
|
|
271 |
"""
|
272 |
return formatted_description
|
273 |
|
274 |
-
|
275 |
async def predict_single_dog(image):
|
276 |
image_tensor = preprocess_image(image)
|
277 |
with torch.no_grad():
|
@@ -284,6 +285,7 @@ async def predict_single_dog(image):
|
|
284 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
285 |
return top1_prob, topk_breeds, topk_probs_percent
|
286 |
|
|
|
287 |
async def detect_multiple_dogs(image):
|
288 |
try:
|
289 |
results = model_yolo(image)
|
@@ -300,6 +302,7 @@ async def detect_multiple_dogs(image):
|
|
300 |
print(f"Error in detect_multiple_dogs: {e}")
|
301 |
return []
|
302 |
|
|
|
303 |
async def predict(image):
|
304 |
if image is None:
|
305 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
@@ -308,6 +311,7 @@ async def predict(image):
|
|
308 |
if isinstance(image, np.ndarray):
|
309 |
image = Image.fromarray(image)
|
310 |
|
|
|
311 |
dogs = await detect_multiple_dogs(image)
|
312 |
|
313 |
if len(dogs) == 0:
|
@@ -322,8 +326,9 @@ async def predict(image):
|
|
322 |
for i, (cropped_image, _, box) in enumerate(dogs, 1):
|
323 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
324 |
|
|
|
325 |
draw.rectangle(box, outline="red", width=3)
|
326 |
-
draw.text((box[0], box[1]), f"Dog {i}", fill="
|
327 |
|
328 |
if top1_prob >= 0.5:
|
329 |
breed = topk_breeds[0]
|
@@ -350,6 +355,7 @@ Dog {i}: Detected with moderate confidence. Here are the top 3 possible breeds:
|
|
350 |
except Exception as e:
|
351 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
352 |
|
|
|
353 |
async def show_details(choice):
|
354 |
if not choice:
|
355 |
return "Please select a breed to view details."
|
@@ -361,7 +367,7 @@ async def show_details(choice):
|
|
361 |
except Exception as e:
|
362 |
return f"An error occurred while showing details: {e}"
|
363 |
|
364 |
-
#
|
365 |
with gr.Blocks(css="""
|
366 |
.container { max-width: 900px; margin: auto; padding: 20px; }
|
367 |
.gr-box { border-radius: 15px; }
|
@@ -398,7 +404,7 @@ with gr.Blocks(css="""
|
|
398 |
inputs=input_image
|
399 |
)
|
400 |
|
401 |
-
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/
|
402 |
|
403 |
if __name__ == "__main__":
|
404 |
iface.launch()
|
|
|
249 |
# if __name__ == "__main__":
|
250 |
# iface.launch()
|
251 |
|
252 |
+
# 格式化狗的品種描述函數
|
253 |
def format_description(description, breed, is_multi_dog=False, dog_number=None):
|
254 |
if isinstance(description, dict):
|
255 |
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items() if key != "Breed"])
|
|
|
272 |
"""
|
273 |
return formatted_description
|
274 |
|
275 |
+
# 預測單隻狗的品種
|
276 |
async def predict_single_dog(image):
|
277 |
image_tensor = preprocess_image(image)
|
278 |
with torch.no_grad():
|
|
|
285 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
286 |
return top1_prob, topk_breeds, topk_probs_percent
|
287 |
|
288 |
+
# 偵測多隻狗的函數
|
289 |
async def detect_multiple_dogs(image):
|
290 |
try:
|
291 |
results = model_yolo(image)
|
|
|
302 |
print(f"Error in detect_multiple_dogs: {e}")
|
303 |
return []
|
304 |
|
305 |
+
# 主預測函數
|
306 |
async def predict(image):
|
307 |
if image is None:
|
308 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
311 |
if isinstance(image, np.ndarray):
|
312 |
image = Image.fromarray(image)
|
313 |
|
314 |
+
# YOLO 偵測多隻狗
|
315 |
dogs = await detect_multiple_dogs(image)
|
316 |
|
317 |
if len(dogs) == 0:
|
|
|
326 |
for i, (cropped_image, _, box) in enumerate(dogs, 1):
|
327 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
328 |
|
329 |
+
# 標註框框標籤更醒目
|
330 |
draw.rectangle(box, outline="red", width=3)
|
331 |
+
draw.text((box[0], box[1]), f"Dog {i}", fill="yellow", font=font)
|
332 |
|
333 |
if top1_prob >= 0.5:
|
334 |
breed = topk_breeds[0]
|
|
|
355 |
except Exception as e:
|
356 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
357 |
|
358 |
+
# 顯示選擇的品種詳細信息
|
359 |
async def show_details(choice):
|
360 |
if not choice:
|
361 |
return "Please select a breed to view details."
|
|
|
367 |
except Exception as e:
|
368 |
return f"An error occurred while showing details: {e}"
|
369 |
|
370 |
+
# Gradio 介面設置
|
371 |
with gr.Blocks(css="""
|
372 |
.container { max-width: 900px; margin: auto; padding: 20px; }
|
373 |
.gr-box { border-radius: 15px; }
|
|
|
404 |
inputs=input_image
|
405 |
)
|
406 |
|
407 |
+
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
408 |
|
409 |
if __name__ == "__main__":
|
410 |
iface.launch()
|