Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -193,17 +193,62 @@ async def predict_single_dog(image):
|
|
193 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
197 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
198 |
dogs = []
|
|
|
199 |
for box in results.boxes:
|
200 |
if box.cls == 16: # COCO dataset class for dog is 16
|
201 |
xyxy = box.xyxy[0].tolist()
|
202 |
confidence = box.conf.item()
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
return dogs
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
async def process_single_dog(image):
|
209 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
@@ -412,9 +457,6 @@ async def predict(image):
|
|
412 |
|
413 |
dogs = await detect_multiple_dogs(image)
|
414 |
|
415 |
-
if len(dogs) == 0:
|
416 |
-
dogs = [(image, 1.0, [0, 0, image.width, image.height])]
|
417 |
-
|
418 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
419 |
explanations = []
|
420 |
buttons = []
|
@@ -452,7 +494,7 @@ async def predict(image):
|
|
452 |
"is_multi_dog": len(dogs) > 1,
|
453 |
"dogs_info": explanations
|
454 |
}
|
455 |
-
return final_explanation, annotated_image, gr.update(visible=
|
456 |
else:
|
457 |
initial_state = {
|
458 |
"explanation": final_explanation,
|
@@ -469,6 +511,7 @@ async def predict(image):
|
|
469 |
print(error_msg)
|
470 |
return error_msg, None, gr.update(visible=False, choices=[]), None
|
471 |
|
|
|
472 |
def show_details(choice, previous_output, initial_state):
|
473 |
if not choice:
|
474 |
return previous_output, gr.update(visible=True), initial_state
|
|
|
193 |
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
194 |
return top1_prob, topk_breeds, topk_probs_percent
|
195 |
|
196 |
+
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.5):
|
197 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
198 |
dogs = []
|
199 |
+
boxes = []
|
200 |
for box in results.boxes:
|
201 |
if box.cls == 16: # COCO dataset class for dog is 16
|
202 |
xyxy = box.xyxy[0].tolist()
|
203 |
confidence = box.conf.item()
|
204 |
+
boxes.append(xyxy)
|
205 |
+
|
206 |
+
# 如果沒有檢測到狗,使用整張圖片
|
207 |
+
if not boxes:
|
208 |
+
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
209 |
+
else:
|
210 |
+
# 合併重疊的框
|
211 |
+
merged_boxes = merge_boxes(boxes)
|
212 |
+
for box in merged_boxes:
|
213 |
+
cropped_image = image.crop((box[0], box[1], box[2], box[3]))
|
214 |
+
dogs.append((cropped_image, 1.0, box))
|
215 |
+
|
216 |
return dogs
|
217 |
|
218 |
+
def merge_boxes(boxes, iou_threshold=0.5):
|
219 |
+
merged = []
|
220 |
+
while boxes:
|
221 |
+
base_box = boxes.pop(0)
|
222 |
+
i = 0
|
223 |
+
while i < len(boxes):
|
224 |
+
if calculate_iou(base_box, boxes[i]) > iou_threshold:
|
225 |
+
base_box = merge_two_boxes(base_box, boxes.pop(i))
|
226 |
+
else:
|
227 |
+
i += 1
|
228 |
+
merged.append(base_box)
|
229 |
+
return merged
|
230 |
+
|
231 |
+
def calculate_iou(box1, box2):
|
232 |
+
x1 = max(box1[0], box2[0])
|
233 |
+
y1 = max(box1[1], box2[1])
|
234 |
+
x2 = min(box1[2], box2[2])
|
235 |
+
y2 = min(box1[3], box2[3])
|
236 |
+
|
237 |
+
intersection = max(0, x2 - x1) * max(0, y2 - y1)
|
238 |
+
area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
|
239 |
+
area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
|
240 |
+
|
241 |
+
iou = intersection / float(area1 + area2 - intersection)
|
242 |
+
return iou
|
243 |
+
|
244 |
+
def merge_two_boxes(box1, box2):
|
245 |
+
return [
|
246 |
+
min(box1[0], box2[0]),
|
247 |
+
min(box1[1], box2[1]),
|
248 |
+
max(box1[2], box2[2]),
|
249 |
+
max(box1[3], box2[3])
|
250 |
+
]
|
251 |
+
|
252 |
|
253 |
async def process_single_dog(image):
|
254 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
|
|
457 |
|
458 |
dogs = await detect_multiple_dogs(image)
|
459 |
|
|
|
|
|
|
|
460 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
461 |
explanations = []
|
462 |
buttons = []
|
|
|
494 |
"is_multi_dog": len(dogs) > 1,
|
495 |
"dogs_info": explanations
|
496 |
}
|
497 |
+
return final_explanation, annotated_image, gr.update(visible=true, choices=buttons), initial_state
|
498 |
else:
|
499 |
initial_state = {
|
500 |
"explanation": final_explanation,
|
|
|
511 |
print(error_msg)
|
512 |
return error_msg, None, gr.update(visible=False, choices=[]), None
|
513 |
|
514 |
+
|
515 |
def show_details(choice, previous_output, initial_state):
|
516 |
if not choice:
|
517 |
return previous_output, gr.update(visible=True), initial_state
|