DawnC commited on
Commit
7ca006d
1 Parent(s): cb2b5ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -7
app.py CHANGED
@@ -193,17 +193,62 @@ async def predict_single_dog(image):
193
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
194
  return top1_prob, topk_breeds, topk_probs_percent
195
 
196
- async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.45):
197
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
198
  dogs = []
 
199
  for box in results.boxes:
200
  if box.cls == 16: # COCO dataset class for dog is 16
201
  xyxy = box.xyxy[0].tolist()
202
  confidence = box.conf.item()
203
- cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
204
- dogs.append((cropped_image, confidence, xyxy))
 
 
 
 
 
 
 
 
 
 
205
  return dogs
206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
207
 
208
  async def process_single_dog(image):
209
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
@@ -412,9 +457,6 @@ async def predict(image):
412
 
413
  dogs = await detect_multiple_dogs(image)
414
 
415
- if len(dogs) == 0:
416
- dogs = [(image, 1.0, [0, 0, image.width, image.height])]
417
-
418
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
419
  explanations = []
420
  buttons = []
@@ -452,7 +494,7 @@ async def predict(image):
452
  "is_multi_dog": len(dogs) > 1,
453
  "dogs_info": explanations
454
  }
455
- return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
456
  else:
457
  initial_state = {
458
  "explanation": final_explanation,
@@ -469,6 +511,7 @@ async def predict(image):
469
  print(error_msg)
470
  return error_msg, None, gr.update(visible=False, choices=[]), None
471
 
 
472
  def show_details(choice, previous_output, initial_state):
473
  if not choice:
474
  return previous_output, gr.update(visible=True), initial_state
 
193
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
194
  return top1_prob, topk_breeds, topk_probs_percent
195
 
196
+ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.5):
197
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
198
  dogs = []
199
+ boxes = []
200
  for box in results.boxes:
201
  if box.cls == 16: # COCO dataset class for dog is 16
202
  xyxy = box.xyxy[0].tolist()
203
  confidence = box.conf.item()
204
+ boxes.append(xyxy)
205
+
206
+ # 如果沒有檢測到狗,使用整張圖片
207
+ if not boxes:
208
+ dogs.append((image, 1.0, [0, 0, image.width, image.height]))
209
+ else:
210
+ # 合併重疊的框
211
+ merged_boxes = merge_boxes(boxes)
212
+ for box in merged_boxes:
213
+ cropped_image = image.crop((box[0], box[1], box[2], box[3]))
214
+ dogs.append((cropped_image, 1.0, box))
215
+
216
  return dogs
217
 
218
+ def merge_boxes(boxes, iou_threshold=0.5):
219
+ merged = []
220
+ while boxes:
221
+ base_box = boxes.pop(0)
222
+ i = 0
223
+ while i < len(boxes):
224
+ if calculate_iou(base_box, boxes[i]) > iou_threshold:
225
+ base_box = merge_two_boxes(base_box, boxes.pop(i))
226
+ else:
227
+ i += 1
228
+ merged.append(base_box)
229
+ return merged
230
+
231
+ def calculate_iou(box1, box2):
232
+ x1 = max(box1[0], box2[0])
233
+ y1 = max(box1[1], box2[1])
234
+ x2 = min(box1[2], box2[2])
235
+ y2 = min(box1[3], box2[3])
236
+
237
+ intersection = max(0, x2 - x1) * max(0, y2 - y1)
238
+ area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
239
+ area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
240
+
241
+ iou = intersection / float(area1 + area2 - intersection)
242
+ return iou
243
+
244
+ def merge_two_boxes(box1, box2):
245
+ return [
246
+ min(box1[0], box2[0]),
247
+ min(box1[1], box2[1]),
248
+ max(box1[2], box2[2]),
249
+ max(box1[3], box2[3])
250
+ ]
251
+
252
 
253
  async def process_single_dog(image):
254
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
 
457
 
458
  dogs = await detect_multiple_dogs(image)
459
 
 
 
 
460
  color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
461
  explanations = []
462
  buttons = []
 
494
  "is_multi_dog": len(dogs) > 1,
495
  "dogs_info": explanations
496
  }
497
+ return final_explanation, annotated_image, gr.update(visible=true, choices=buttons), initial_state
498
  else:
499
  initial_state = {
500
  "explanation": final_explanation,
 
511
  print(error_msg)
512
  return error_msg, None, gr.update(visible=False, choices=[]), None
513
 
514
+
515
  def show_details(choice, previous_output, initial_state):
516
  if not choice:
517
  return previous_output, gr.update(visible=True), initial_state