Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,8 @@ import torch.nn.functional as F
|
|
8 |
from torchvision import transforms
|
9 |
from PIL import Image
|
10 |
from data_manager import get_dog_description
|
|
|
|
|
11 |
|
12 |
dog_breeds = ["Afghan_Hound(阿富汗獵犬)", "African_Hunting_Dog(非洲野犬)", "Airedale(艾爾谷犬)",
|
13 |
"American_Staffordshire_Terrier(美國斯塔福郡梗)", "Appenzeller(亞賓澤爾犬)",
|
@@ -139,18 +141,53 @@ def preprocess_image(image):
|
|
139 |
|
140 |
return transform(image).unsqueeze(0)
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
def predict(image):
|
143 |
try:
|
144 |
image_tensor = preprocess_image(image)
|
145 |
with torch.no_grad():
|
146 |
-
logits,
|
147 |
_, predicted = torch.max(logits, 1)
|
148 |
-
|
149 |
breed = dog_breeds[predicted.item()] # Map label to breed name
|
150 |
-
|
151 |
# Retrieve breed description
|
152 |
description = get_dog_description(breed)
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
# Formatting the description for better display
|
155 |
if isinstance(description, dict):
|
156 |
description_str = f"**Breed**: {description['Breed']}\n\n"
|
@@ -164,89 +201,70 @@ def predict(image):
|
|
164 |
description_str += f"**Description**: {description['Description']}\n\n"
|
165 |
else:
|
166 |
description_str = description
|
167 |
-
|
|
|
|
|
|
|
168 |
return description_str
|
169 |
except Exception as e:
|
170 |
return f"An error occurred: {e}"
|
171 |
|
|
|
172 |
iface = gr.Interface(
|
173 |
fn=predict,
|
174 |
-
inputs=gr.Image(label="Upload
|
175 |
-
outputs="
|
176 |
-
title="<
|
177 |
-
description="<
|
178 |
examples=['Border_Collie.jpg',
|
179 |
'Golden_Retriever.jpeg',
|
180 |
'Saint_Bernard.jpeg',
|
181 |
'French_Bulldog.jpeg',
|
182 |
'Samoyed.jpg'],
|
183 |
-
|
184 |
-
/*
|
185 |
-
.
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
.gr-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
}
|
225 |
-
|
226 |
-
|
227 |
-
.output-markdown {
|
228 |
-
font-family: 'Noto Sans', sans-serif;
|
229 |
-
line-height: 1.75;
|
230 |
-
color: #34495E;
|
231 |
-
overflow: hidden;
|
232 |
-
max-height: none;
|
233 |
-
}
|
234 |
-
|
235 |
-
/* 調整範例圖片區塊樣式 */
|
236 |
-
.examples img {
|
237 |
-
border-radius: 10px;
|
238 |
-
transition: transform 0.3s ease, box-shadow 0.3s ease;
|
239 |
-
}
|
240 |
-
.examples img:hover {
|
241 |
-
transform: scale(1.05);
|
242 |
-
box-shadow: 0px 5px 10px rgba(0, 0, 0, 0.15);
|
243 |
-
}
|
244 |
-
|
245 |
-
/* 去掉範例圖片滾動條 */
|
246 |
-
.examples {
|
247 |
-
overflow: hidden;
|
248 |
-
}
|
249 |
-
""", theme='default')
|
250 |
|
251 |
|
252 |
|
|
|
8 |
from torchvision import transforms
|
9 |
from PIL import Image
|
10 |
from data_manager import get_dog_description
|
11 |
+
import wikipedia
|
12 |
+
from urllib.parse import quote
|
13 |
|
14 |
dog_breeds = ["Afghan_Hound(阿富汗獵犬)", "African_Hunting_Dog(非洲野犬)", "Airedale(艾爾谷犬)",
|
15 |
"American_Staffordshire_Terrier(美國斯塔福郡梗)", "Appenzeller(亞賓澤爾犬)",
|
|
|
141 |
|
142 |
return transform(image).unsqueeze(0)
|
143 |
|
144 |
+
# def predict(image):
|
145 |
+
# try:
|
146 |
+
# image_tensor = preprocess_image(image)
|
147 |
+
# with torch.no_grad():
|
148 |
+
# logits, _ = model(image_tensor)
|
149 |
+
# _, predicted = torch.max(logits, 1)
|
150 |
+
|
151 |
+
# breed = dog_breeds[predicted.item()] # Map label to breed name
|
152 |
+
|
153 |
+
# # Retrieve breed description
|
154 |
+
# description = get_dog_description(breed)
|
155 |
+
|
156 |
+
# # Formatting the description for better display
|
157 |
+
# if isinstance(description, dict):
|
158 |
+
# description_str = f"**Breed**: {description['Breed']}\n\n"
|
159 |
+
# description_str += f"**Size**: {description['Size']}\n\n"
|
160 |
+
# description_str += f"**Lifespan**: {description['Lifespan']}\n\n"
|
161 |
+
# description_str += f"**Temperament**: {description['Temperament']}\n\n"
|
162 |
+
# description_str += f"**Care Level**: {description['Care Level']}\n\n"
|
163 |
+
# description_str += f"**Good with Children**: {description['Good with Children']}\n\n"
|
164 |
+
# description_str += f"**Exercise Needs**: {description['Exercise Needs']}\n\n"
|
165 |
+
# description_str += f"**Grooming Needs**: {description['Grooming Needs']}\n\n"
|
166 |
+
# description_str += f"**Description**: {description['Description']}\n\n"
|
167 |
+
# else:
|
168 |
+
# description_str = description
|
169 |
+
|
170 |
+
# return description_str
|
171 |
+
# except Exception as e:
|
172 |
+
# return f"An error occurred: {e}"
|
173 |
+
|
174 |
def predict(image):
|
175 |
try:
|
176 |
image_tensor = preprocess_image(image)
|
177 |
with torch.no_grad():
|
178 |
+
logits, * = model(image_tensor)
|
179 |
_, predicted = torch.max(logits, 1)
|
|
|
180 |
breed = dog_breeds[predicted.item()] # Map label to breed name
|
181 |
+
|
182 |
# Retrieve breed description
|
183 |
description = get_dog_description(breed)
|
184 |
+
|
185 |
+
# Generate Wikipedia link
|
186 |
+
try:
|
187 |
+
wiki_link = wikipedia.page(f"{breed} dog").url
|
188 |
+
except:
|
189 |
+
wiki_link = f"https://en.wikipedia.org/wiki/Special:Search?search={quote(breed)}+dog"
|
190 |
+
|
191 |
# Formatting the description for better display
|
192 |
if isinstance(description, dict):
|
193 |
description_str = f"**Breed**: {description['Breed']}\n\n"
|
|
|
201 |
description_str += f"**Description**: {description['Description']}\n\n"
|
202 |
else:
|
203 |
description_str = description
|
204 |
+
|
205 |
+
# Add Wikipedia link
|
206 |
+
description_str += f"\n\n[Click here to view the Wikipedia page for {breed}]({wiki_link})"
|
207 |
+
|
208 |
return description_str
|
209 |
except Exception as e:
|
210 |
return f"An error occurred: {e}"
|
211 |
|
212 |
+
|
213 |
iface = gr.Interface(
|
214 |
fn=predict,
|
215 |
+
inputs=gr.Image(label="Upload a dog image", type="numpy"),
|
216 |
+
outputs=gr.Markdown(label="Prediction Results"),
|
217 |
+
title="<h1 style='font-family:Roboto; font-weight:bold; color:#2C3E50; text-align:center;'>🐶 Dog Breed Classifier 🔍</h1>",
|
218 |
+
description="<p style='font-family:Open Sans; color:#34495E; text-align:center;'>Upload a picture of a dog, and AI will predict its breed, provide detailed information, and include a Wikipedia link!</p>",
|
219 |
examples=['Border_Collie.jpg',
|
220 |
'Golden_Retriever.jpeg',
|
221 |
'Saint_Bernard.jpeg',
|
222 |
'French_Bulldog.jpeg',
|
223 |
'Samoyed.jpg'],
|
224 |
+
css = """
|
225 |
+
/* 新增樣式 */
|
226 |
+
.container {
|
227 |
+
max-width: 900px;
|
228 |
+
margin: 0 auto;
|
229 |
+
padding: 20px;
|
230 |
+
background-color: rgba(255, 255, 255, 0.9);
|
231 |
+
border-radius: 15px;
|
232 |
+
box-shadow: 0 0 20px rgba(0, 0, 0, 0.1);
|
233 |
+
}
|
234 |
+
|
235 |
+
.gr-form {
|
236 |
+
display: flex;
|
237 |
+
flex-direction: column;
|
238 |
+
align-items: center;
|
239 |
+
}
|
240 |
+
|
241 |
+
.gr-box {
|
242 |
+
width: 100%;
|
243 |
+
max-width: 500px;
|
244 |
+
}
|
245 |
+
|
246 |
+
.output-markdown, .output-image {
|
247 |
+
margin-top: 20px;
|
248 |
+
padding: 15px;
|
249 |
+
background-color: #f5f5f5;
|
250 |
+
border-radius: 10px;
|
251 |
+
}
|
252 |
+
|
253 |
+
.examples {
|
254 |
+
display: flex;
|
255 |
+
justify-content: center;
|
256 |
+
flex-wrap: wrap;
|
257 |
+
gap: 10px;
|
258 |
+
margin-top: 20px;
|
259 |
+
}
|
260 |
+
|
261 |
+
.examples img {
|
262 |
+
width: 100px;
|
263 |
+
height: 100px;
|
264 |
+
object-fit: cover;
|
265 |
+
}
|
266 |
+
""",
|
267 |
+
theme='default')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
|
270 |
|