Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -312,7 +312,7 @@ def _predict_single_dog(image):
|
|
312 |
# return dogs
|
313 |
# 此為如果後面調不好 使用的版本
|
314 |
|
315 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
316 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
317 |
dogs = []
|
318 |
for box in results.boxes:
|
@@ -320,33 +320,45 @@ async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.3):
|
|
320 |
xyxy = box.xyxy[0].tolist()
|
321 |
confidence = box.conf.item()
|
322 |
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
323 |
-
|
324 |
-
if area > 0.005 * image_area: # 降低面積閾值以檢測更多狗
|
325 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
326 |
dogs.append((cropped_image, confidence, xyxy))
|
327 |
|
328 |
-
#
|
329 |
-
|
330 |
-
results = model_yolo(image, conf=conf_threshold/2, iou=iou_threshold)[0]
|
331 |
-
for box in results.boxes:
|
332 |
-
if box.cls == 16:
|
333 |
-
xyxy = box.xyxy[0].tolist()
|
334 |
-
confidence = box.conf.item()
|
335 |
-
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
336 |
-
image_area = image.width * image.height
|
337 |
-
if area > 0.005 * image_area and not is_box_duplicate(xyxy, [d[2] for d in dogs]):
|
338 |
-
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
339 |
-
dogs.append((cropped_image, confidence, xyxy))
|
340 |
|
341 |
return dogs
|
342 |
|
343 |
-
def
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
349 |
def calculate_iou(box1, box2):
|
|
|
350 |
x1 = max(box1[0], box2[0])
|
351 |
y1 = max(box1[1], box2[1])
|
352 |
x2 = min(box1[2], box2[2])
|
@@ -474,48 +486,72 @@ def calculate_iou(box1, box2):
|
|
474 |
|
475 |
async def predict(image):
|
476 |
if image is None:
|
477 |
-
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
478 |
|
479 |
try:
|
480 |
if isinstance(image, np.ndarray):
|
481 |
image = Image.fromarray(image)
|
482 |
|
483 |
-
#
|
484 |
-
dogs = await detect_multiple_dogs(image)
|
485 |
|
486 |
if len(dogs) <= 1:
|
487 |
-
#
|
488 |
return await process_single_dog(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
489 |
else:
|
490 |
-
|
491 |
-
return await process_multiple_dogs(image, dogs)
|
492 |
|
493 |
except Exception as e:
|
494 |
-
|
495 |
-
print(error_msg) # 添加日誌輸出
|
496 |
-
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
497 |
-
|
498 |
-
def has_multiple_dogs(image):
|
499 |
-
gray = image.convert('L')
|
500 |
-
edges = gray.filter(ImageFilter.FIND_EDGES)
|
501 |
-
edge_pixels = np.array(edges)
|
502 |
-
return np.sum(edge_pixels > 128) > image.width * image.height * 0.1
|
503 |
|
504 |
async def process_single_dog(image):
|
505 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
506 |
-
|
|
|
|
|
507 |
breed = topk_breeds[0]
|
508 |
description = get_dog_description(breed)
|
509 |
|
510 |
if top1_prob >= 0.5:
|
511 |
formatted_description = format_description(description, breed)
|
512 |
-
|
513 |
-
|
514 |
-
"buttons": [],
|
515 |
-
"show_back": False
|
516 |
-
}
|
517 |
-
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
518 |
-
elif top1_prob >= 0.2:
|
519 |
explanation = (
|
520 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
521 |
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
@@ -523,80 +559,18 @@ async def process_single_dog(image):
|
|
523 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
524 |
"Click on a button to view more information about the breed."
|
525 |
)
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
initial_state = {
|
532 |
-
"explanation": explanation,
|
533 |
-
"buttons": buttons,
|
534 |
-
"show_back": True
|
535 |
-
}
|
536 |
-
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
537 |
-
else:
|
538 |
-
initial_state = {
|
539 |
-
"explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
|
540 |
-
"buttons": [],
|
541 |
-
"show_back": False
|
542 |
-
}
|
543 |
-
return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
544 |
-
|
545 |
-
async def process_multiple_dogs(image, dogs):
|
546 |
-
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
547 |
-
explanations = []
|
548 |
-
buttons = []
|
549 |
-
annotated_image = image.copy()
|
550 |
-
draw = ImageDraw.Draw(annotated_image)
|
551 |
-
font = ImageFont.load_default()
|
552 |
-
|
553 |
-
for i, (cropped_image, _, box) in enumerate(dogs):
|
554 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
555 |
-
color = color_list[i % len(color_list)]
|
556 |
-
draw.rectangle(box, outline=color, width=3)
|
557 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
558 |
-
|
559 |
-
breed = topk_breeds[0]
|
560 |
-
if top1_prob >= 0.5:
|
561 |
-
description = get_dog_description(breed)
|
562 |
-
formatted_description = format_description(description, breed)
|
563 |
-
explanations.append(f"Dog {i+1}: {formatted_description}")
|
564 |
-
elif top1_prob >= 0.2:
|
565 |
-
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
566 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
567 |
-
explanations.append(dog_explanation)
|
568 |
-
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
569 |
-
else:
|
570 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
571 |
-
|
572 |
-
final_explanation = "\n\n".join(explanations)
|
573 |
-
if buttons:
|
574 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
575 |
-
initial_state = {
|
576 |
-
"explanation": final_explanation,
|
577 |
-
"buttons": buttons,
|
578 |
-
"show_back": True
|
579 |
-
}
|
580 |
-
return (final_explanation, annotated_image,
|
581 |
-
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
582 |
-
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
583 |
-
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
584 |
-
gr.update(visible=True),
|
585 |
-
initial_state)
|
586 |
-
else:
|
587 |
-
initial_state = {
|
588 |
-
"explanation": final_explanation,
|
589 |
-
"buttons": [],
|
590 |
-
"show_back": False
|
591 |
-
}
|
592 |
-
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
593 |
|
594 |
def show_details(choice, previous_output):
|
595 |
if not choice:
|
596 |
return previous_output, gr.update(visible=True)
|
597 |
|
598 |
try:
|
599 |
-
breed = choice.split("More about ")[-1]
|
600 |
description = get_dog_description(breed)
|
601 |
return format_description(description, breed), gr.update(visible=True)
|
602 |
except Exception as e:
|
|
|
312 |
# return dogs
|
313 |
# 此為如果後面調不好 使用的版本
|
314 |
|
315 |
+
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
|
316 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
317 |
dogs = []
|
318 |
for box in results.boxes:
|
|
|
320 |
xyxy = box.xyxy[0].tolist()
|
321 |
confidence = box.conf.item()
|
322 |
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
323 |
+
if area > 1000: # 過濾掉太小的檢測框
|
|
|
324 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
325 |
dogs.append((cropped_image, confidence, xyxy))
|
326 |
|
327 |
+
# 合併重疊的檢測框
|
328 |
+
dogs = merge_overlapping_boxes(dogs, iou_threshold=0.6)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
return dogs
|
331 |
|
332 |
+
def merge_overlapping_boxes(dogs, iou_threshold=0.6):
|
333 |
+
merged_dogs = []
|
334 |
+
while dogs:
|
335 |
+
base = dogs.pop(0)
|
336 |
+
i = 0
|
337 |
+
while i < len(dogs):
|
338 |
+
if calculate_iou(base[2], dogs[i][2]) > iou_threshold:
|
339 |
+
# 合併重疊的框
|
340 |
+
base = merge_boxes(base, dogs.pop(i))
|
341 |
+
else:
|
342 |
+
i += 1
|
343 |
+
merged_dogs.append(base)
|
344 |
+
return merged_dogs
|
345 |
+
|
346 |
+
def merge_boxes(box1, box2):
|
347 |
+
xyxy1, conf1, _ = box1
|
348 |
+
xyxy2, conf2, _ = box2
|
349 |
+
merged_xyxy = [
|
350 |
+
min(xyxy1[0], xyxy2[0]),
|
351 |
+
min(xyxy1[1], xyxy2[1]),
|
352 |
+
max(xyxy1[2], xyxy2[2]),
|
353 |
+
max(xyxy1[3], xyxy2[3])
|
354 |
+
]
|
355 |
+
merged_conf = max(conf1, conf2)
|
356 |
+
merged_image = Image.new('RGB', (int(merged_xyxy[2] - merged_xyxy[0]), int(merged_xyxy[3] - merged_xyxy[1])))
|
357 |
+
merged_image.paste(box1[0], (0, 0))
|
358 |
+
return (merged_image, merged_conf, merged_xyxy)
|
359 |
|
360 |
def calculate_iou(box1, box2):
|
361 |
+
# 計算兩個邊界框的交集面積
|
362 |
x1 = max(box1[0], box2[0])
|
363 |
y1 = max(box1[1], box2[1])
|
364 |
x2 = min(box1[2], box2[2])
|
|
|
486 |
|
487 |
async def predict(image):
|
488 |
if image is None:
|
489 |
+
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
490 |
|
491 |
try:
|
492 |
if isinstance(image, np.ndarray):
|
493 |
image = Image.fromarray(image)
|
494 |
|
495 |
+
# 嘗試檢測多隻狗,進一步降低閾值以提高檢測率
|
496 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.05) # 降低閾值以檢測更多狗
|
497 |
|
498 |
if len(dogs) <= 1:
|
499 |
+
# 單狗情境
|
500 |
return await process_single_dog(image)
|
501 |
+
|
502 |
+
# 多狗情境
|
503 |
+
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
504 |
+
explanations = []
|
505 |
+
buttons = []
|
506 |
+
annotated_image = image.copy()
|
507 |
+
draw = ImageDraw.Draw(annotated_image)
|
508 |
+
font = ImageFont.load_default()
|
509 |
+
|
510 |
+
for i, (cropped_image, _, box) in enumerate(dogs):
|
511 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
512 |
+
color = color_list[i % len(color_list)]
|
513 |
+
draw.rectangle(box, outline=color, width=3)
|
514 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
515 |
+
|
516 |
+
breed = topk_breeds[0]
|
517 |
+
if top1_prob >= 0.5:
|
518 |
+
description = get_dog_description(breed)
|
519 |
+
formatted_description = format_description(description, breed)
|
520 |
+
explanations.append(f"Dog {i+1}: {formatted_description}")
|
521 |
+
elif top1_prob >= 0.2:
|
522 |
+
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
523 |
+
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
524 |
+
explanations.append(dog_explanation)
|
525 |
+
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
526 |
+
else:
|
527 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
528 |
+
|
529 |
+
final_explanation = "\n\n".join(explanations)
|
530 |
+
if buttons:
|
531 |
+
final_explanation += "\n\nClick on a button to view more information about the breed."
|
532 |
+
return (final_explanation, annotated_image,
|
533 |
+
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
534 |
+
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
535 |
+
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
536 |
+
gr.update(visible=True)) # 顯示 back 按鈕
|
537 |
else:
|
538 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
539 |
|
540 |
except Exception as e:
|
541 |
+
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
542 |
|
543 |
async def process_single_dog(image):
|
544 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
545 |
+
if top1_prob < 0.2:
|
546 |
+
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
547 |
+
|
548 |
breed = topk_breeds[0]
|
549 |
description = get_dog_description(breed)
|
550 |
|
551 |
if top1_prob >= 0.5:
|
552 |
formatted_description = format_description(description, breed)
|
553 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
554 |
+
else:
|
|
|
|
|
|
|
|
|
|
|
555 |
explanation = (
|
556 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
557 |
f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
|
|
559 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
560 |
"Click on a button to view more information about the breed."
|
561 |
)
|
562 |
+
return (explanation, image,
|
563 |
+
gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
|
564 |
+
gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
|
565 |
+
gr.update(visible=True, value=f"More about {topk_breeds[2]}"),
|
566 |
+
gr.update(visible=True)) # 顯示 back 按鈕
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
|
568 |
def show_details(choice, previous_output):
|
569 |
if not choice:
|
570 |
return previous_output, gr.update(visible=True)
|
571 |
|
572 |
try:
|
573 |
+
breed = choice.split("More about ")[-1]
|
574 |
description = get_dog_description(breed)
|
575 |
return format_description(description, breed), gr.update(visible=True)
|
576 |
except Exception as e:
|