Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -244,12 +244,12 @@ def _predict_single_dog(image):
|
|
244 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
245 |
|
246 |
|
247 |
-
async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.
|
248 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
249 |
dogs = []
|
250 |
|
251 |
image_area = image.width * image.height
|
252 |
-
min_area_ratio = 0.005 #
|
253 |
|
254 |
for box in results.boxes:
|
255 |
if box.cls == 16: # COCO 數據集中狗的類別是 16
|
@@ -259,17 +259,57 @@ async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.3, mer
|
|
259 |
confidence = box.conf.item()
|
260 |
dogs.append((xyxy, confidence))
|
261 |
|
262 |
-
# 使用 NMS 進行後處理
|
263 |
if dogs:
|
264 |
boxes = torch.tensor([dog[0] for dog in dogs])
|
265 |
scores = torch.tensor([dog[1] for dog in dogs])
|
|
|
|
|
266 |
keep = nms(boxes, scores, iou_threshold)
|
267 |
|
268 |
merged_dogs = []
|
269 |
for i in keep:
|
270 |
xyxy = boxes[i].tolist()
|
271 |
confidence = scores[i].item()
|
272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
expanded_xyxy = [
|
274 |
max(0, xyxy[0] - 20),
|
275 |
max(0, xyxy[1] - 20),
|
@@ -277,9 +317,9 @@ async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.3, mer
|
|
277 |
min(image.height, xyxy[3] + 20)
|
278 |
]
|
279 |
cropped_image = image.crop(expanded_xyxy)
|
280 |
-
|
281 |
|
282 |
-
return
|
283 |
|
284 |
# 如果沒有檢測到狗狗,返回整張圖片
|
285 |
return [(image, 1.0, [0, 0, image.width, image.height])]
|
|
|
244 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
245 |
|
246 |
|
247 |
+
async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.4, merge_threshold=0.7):
|
248 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
249 |
dogs = []
|
250 |
|
251 |
image_area = image.width * image.height
|
252 |
+
min_area_ratio = 0.005 # 最小檢測面積佔整個圖像的比例
|
253 |
|
254 |
for box in results.boxes:
|
255 |
if box.cls == 16: # COCO 數據集中狗的類別是 16
|
|
|
259 |
confidence = box.conf.item()
|
260 |
dogs.append((xyxy, confidence))
|
261 |
|
|
|
262 |
if dogs:
|
263 |
boxes = torch.tensor([dog[0] for dog in dogs])
|
264 |
scores = torch.tensor([dog[1] for dog in dogs])
|
265 |
+
|
266 |
+
# 應用 NMS
|
267 |
keep = nms(boxes, scores, iou_threshold)
|
268 |
|
269 |
merged_dogs = []
|
270 |
for i in keep:
|
271 |
xyxy = boxes[i].tolist()
|
272 |
confidence = scores[i].item()
|
273 |
+
merged_dogs.append((xyxy, confidence))
|
274 |
+
|
275 |
+
# 後處理:分離過於接近的檢測框
|
276 |
+
final_dogs = []
|
277 |
+
while merged_dogs:
|
278 |
+
base_dog = merged_dogs.pop(0)
|
279 |
+
to_merge = [base_dog]
|
280 |
+
|
281 |
+
i = 0
|
282 |
+
while i < len(merged_dogs):
|
283 |
+
iou = box_iou(torch.tensor([base_dog[0]]), torch.tensor([merged_dogs[i][0]]))[0][0].item()
|
284 |
+
if iou > merge_threshold:
|
285 |
+
to_merge.append(merged_dogs.pop(i))
|
286 |
+
else:
|
287 |
+
i += 1
|
288 |
+
|
289 |
+
if len(to_merge) == 1:
|
290 |
+
final_dogs.append(base_dog)
|
291 |
+
else:
|
292 |
+
# 如果檢測到多個重疊框,嘗試分離它們
|
293 |
+
centers = torch.tensor([[((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)] for box, _ in to_merge])
|
294 |
+
distances = torch.cdist(centers, centers)
|
295 |
+
|
296 |
+
if torch.any(distances > 0): # 確保不是完全重疊
|
297 |
+
max_distance = distances.max()
|
298 |
+
if max_distance > (base_dog[0][2] - base_dog[0][0]) * 0.5: # 如果最大距離大於框寬度的一半
|
299 |
+
final_dogs.extend(to_merge)
|
300 |
+
else:
|
301 |
+
# 合併為一個框
|
302 |
+
merged_box = torch.tensor([box for box, _ in to_merge]).mean(dim=0)
|
303 |
+
merged_confidence = max(conf for _, conf in to_merge)
|
304 |
+
final_dogs.append((merged_box.tolist(), merged_confidence))
|
305 |
+
else:
|
306 |
+
# 完全重疊的情況,保留置信度最高的
|
307 |
+
best_dog = max(to_merge, key=lambda x: x[1])
|
308 |
+
final_dogs.append(best_dog)
|
309 |
+
|
310 |
+
# 擴展邊界框並創建剪裁的圖像
|
311 |
+
expanded_dogs = []
|
312 |
+
for xyxy, confidence in final_dogs:
|
313 |
expanded_xyxy = [
|
314 |
max(0, xyxy[0] - 20),
|
315 |
max(0, xyxy[1] - 20),
|
|
|
317 |
min(image.height, xyxy[3] + 20)
|
318 |
]
|
319 |
cropped_image = image.crop(expanded_xyxy)
|
320 |
+
expanded_dogs.append((cropped_image, confidence, expanded_xyxy))
|
321 |
|
322 |
+
return expanded_dogs
|
323 |
|
324 |
# 如果沒有檢測到狗狗,返回整張圖片
|
325 |
return [(image, 1.0, [0, 0, image.width, image.height])]
|