Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -312,44 +312,50 @@ def _predict_single_dog(image):
|
|
312 |
# return dogs
|
313 |
# 此為如果後面調不好 使用的版本
|
314 |
|
315 |
-
async def detect_multiple_dogs(image, conf_threshold=0.
|
316 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
317 |
dogs = []
|
318 |
-
all_boxes = []
|
319 |
-
|
320 |
-
# 首先收集所有可能的狗的邊界框
|
321 |
for box in results.boxes:
|
322 |
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
323 |
xyxy = box.xyxy[0].tolist()
|
324 |
confidence = box.conf.item()
|
325 |
-
|
326 |
-
|
327 |
-
# 按置信度排序
|
328 |
-
all_boxes.sort(key=lambda x: x[1], reverse=True)
|
329 |
-
|
330 |
-
# 應用非最大抑制
|
331 |
-
for box, confidence in all_boxes:
|
332 |
-
if not is_box_overlapping(box, [d[2] for d in dogs], iou_threshold):
|
333 |
-
cropped_image = image.crop((box[0], box[1], box[2], box[3]))
|
334 |
-
dogs.append((cropped_image, confidence, box))
|
335 |
-
|
336 |
-
# 如果沒有檢測到狗,嘗試降低閾值再次檢測
|
337 |
-
if len(dogs) == 0:
|
338 |
-
results = model_yolo(image, conf=conf_threshold/2, iou=iou_threshold)[0]
|
339 |
-
for box in results.boxes:
|
340 |
-
if box.cls == 16:
|
341 |
-
xyxy = box.xyxy[0].tolist()
|
342 |
-
confidence = box.conf.item()
|
343 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
344 |
dogs.append((cropped_image, confidence, xyxy))
|
345 |
|
|
|
|
|
|
|
346 |
return dogs
|
347 |
|
348 |
-
def
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
|
354 |
def calculate_iou(box1, box2):
|
355 |
# 計算兩個邊界框的交集面積
|
@@ -487,69 +493,32 @@ async def predict(image):
|
|
487 |
if isinstance(image, np.ndarray):
|
488 |
image = Image.fromarray(image)
|
489 |
|
490 |
-
dogs = await detect_multiple_dogs(image, conf_threshold=0.
|
|
|
|
|
|
|
|
|
491 |
|
492 |
if len(dogs) == 0:
|
493 |
-
# 沒有檢測到狗,使用原始圖像進行單狗處理
|
494 |
return await process_single_dog(image)
|
495 |
elif len(dogs) == 1:
|
496 |
-
# 只檢測到一隻狗,使用裁剪後的圖像進行處理
|
497 |
return await process_single_dog(dogs[0][0])
|
498 |
else:
|
499 |
-
#
|
500 |
-
|
501 |
-
explanations = []
|
502 |
-
buttons = []
|
503 |
-
annotated_image = image.copy()
|
504 |
-
draw = ImageDraw.Draw(annotated_image)
|
505 |
-
font = ImageFont.load_default()
|
506 |
-
|
507 |
-
for i, (cropped_image, confidence, box) in enumerate(dogs):
|
508 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
509 |
-
color = color_list[i % len(color_list)]
|
510 |
-
draw.rectangle(box, outline=color, width=3)
|
511 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
512 |
-
|
513 |
-
breed = topk_breeds[0]
|
514 |
-
if top1_prob >= 0.5:
|
515 |
-
description = get_dog_description(breed)
|
516 |
-
formatted_description = format_description(description, breed)
|
517 |
-
explanations.append(f"Dog {i+1}: {formatted_description}")
|
518 |
-
elif top1_prob >= 0.2:
|
519 |
-
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
520 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
521 |
-
explanations.append(dog_explanation)
|
522 |
-
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
523 |
-
else:
|
524 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
525 |
-
|
526 |
-
final_explanation = "\n\n".join(explanations)
|
527 |
-
if buttons:
|
528 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
529 |
-
initial_state = {
|
530 |
-
"explanation": final_explanation,
|
531 |
-
"buttons": buttons,
|
532 |
-
"show_back": True
|
533 |
-
}
|
534 |
-
return (final_explanation, annotated_image,
|
535 |
-
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
536 |
-
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
537 |
-
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
538 |
-
gr.update(visible=True),
|
539 |
-
initial_state)
|
540 |
-
else:
|
541 |
-
initial_state = {
|
542 |
-
"explanation": final_explanation,
|
543 |
-
"buttons": [],
|
544 |
-
"show_back": False
|
545 |
-
}
|
546 |
-
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
547 |
|
548 |
except Exception as e:
|
549 |
error_msg = f"An error occurred: {str(e)}"
|
550 |
print(error_msg) # 添加日誌輸出
|
551 |
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
552 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
553 |
async def process_single_dog(image):
|
554 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
555 |
if top1_prob < 0.2:
|
|
|
312 |
# return dogs
|
313 |
# 此為如果後面調不好 使用的版本
|
314 |
|
315 |
+
async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5):
|
316 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
317 |
dogs = []
|
|
|
|
|
|
|
318 |
for box in results.boxes:
|
319 |
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
320 |
xyxy = box.xyxy[0].tolist()
|
321 |
confidence = box.conf.item()
|
322 |
+
area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
323 |
+
if area > 1000: # 過濾掉太小的檢測框
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
324 |
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
325 |
dogs.append((cropped_image, confidence, xyxy))
|
326 |
|
327 |
+
# 合併重疊的檢測框
|
328 |
+
dogs = merge_overlapping_boxes(dogs, iou_threshold=0.6)
|
329 |
+
|
330 |
return dogs
|
331 |
|
332 |
+
def merge_overlapping_boxes(dogs, iou_threshold=0.6):
|
333 |
+
merged_dogs = []
|
334 |
+
while dogs:
|
335 |
+
base = dogs.pop(0)
|
336 |
+
i = 0
|
337 |
+
while i < len(dogs):
|
338 |
+
if calculate_iou(base[2], dogs[i][2]) > iou_threshold:
|
339 |
+
# 合併重疊的框
|
340 |
+
base = merge_boxes(base, dogs.pop(i))
|
341 |
+
else:
|
342 |
+
i += 1
|
343 |
+
merged_dogs.append(base)
|
344 |
+
return merged_dogs
|
345 |
+
|
346 |
+
def merge_boxes(box1, box2):
|
347 |
+
xyxy1, conf1, _ = box1
|
348 |
+
xyxy2, conf2, _ = box2
|
349 |
+
merged_xyxy = [
|
350 |
+
min(xyxy1[0], xyxy2[0]),
|
351 |
+
min(xyxy1[1], xyxy2[1]),
|
352 |
+
max(xyxy1[2], xyxy2[2]),
|
353 |
+
max(xyxy1[3], xyxy2[3])
|
354 |
+
]
|
355 |
+
merged_conf = max(conf1, conf2)
|
356 |
+
merged_image = Image.new('RGB', (int(merged_xyxy[2] - merged_xyxy[0]), int(merged_xyxy[3] - merged_xyxy[1])))
|
357 |
+
merged_image.paste(box1[0], (0, 0))
|
358 |
+
return (merged_image, merged_conf, merged_xyxy)
|
359 |
|
360 |
def calculate_iou(box1, box2):
|
361 |
# 計算兩個邊界框的交集面積
|
|
|
493 |
if isinstance(image, np.ndarray):
|
494 |
image = Image.fromarray(image)
|
495 |
|
496 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.5)
|
497 |
+
|
498 |
+
# 如果檢測到的狗的數量不合理,嘗試調整參數重新檢測
|
499 |
+
if len(dogs) > 5 or (len(dogs) == 0 and has_dog_features(image)):
|
500 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.2, iou_threshold=0.4)
|
501 |
|
502 |
if len(dogs) == 0:
|
|
|
503 |
return await process_single_dog(image)
|
504 |
elif len(dogs) == 1:
|
|
|
505 |
return await process_single_dog(dogs[0][0])
|
506 |
else:
|
507 |
+
# 多狗情境處理邏輯...
|
508 |
+
# (保持原有的多狗處理邏輯不變)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
|
510 |
except Exception as e:
|
511 |
error_msg = f"An error occurred: {str(e)}"
|
512 |
print(error_msg) # 添加日誌輸出
|
513 |
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
514 |
|
515 |
+
def has_dog_features(image):
|
516 |
+
# 使用簡單的啟發式方法來檢查圖像是否可能包含狗
|
517 |
+
# 這裡可以使用更複雜的方法,如特徵提取或輕量級模型
|
518 |
+
gray = image.convert('L')
|
519 |
+
edges = gray.filter(ImageFilter.FIND_EDGES)
|
520 |
+
return np.mean(np.array(edges)) > 10 # 假設邊緣檢測後的平均值大於 10 表示可能有狗
|
521 |
+
|
522 |
async def process_single_dog(image):
|
523 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
524 |
if top1_prob < 0.2:
|