DawnC commited on
Commit
94e51dd
1 Parent(s): 864e6cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -9
app.py CHANGED
@@ -283,14 +283,13 @@ async def predict_single_dog(image):
283
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
284
  return top1_prob, topk_breeds, topk_probs_percent
285
 
286
- # 偵測多隻狗的函數
287
  async def detect_multiple_dogs(image):
288
  try:
289
- # 調整圖像大小以加快處理速度
290
  img = image.copy()
291
  img.thumbnail((640, 640))
292
 
293
- results = model_yolo(img, conf=0.3) # 降低置信度閾值以檢測更多狗
294
  dogs = []
295
  for result in results:
296
  for box in result.boxes:
@@ -299,6 +298,15 @@ async def detect_multiple_dogs(image):
299
  confidence = box.conf.item()
300
  cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
301
  dogs.append((cropped_image, confidence, xyxy))
 
 
 
 
 
 
 
 
 
302
  return dogs
303
  except Exception as e:
304
  print(f"Error in detect_multiple_dogs: {e}")
@@ -312,11 +320,15 @@ async def predict(image):
312
  if isinstance(image, np.ndarray):
313
  image = Image.fromarray(image)
314
 
315
- # 使用 YOLO 檢測狗
316
  dogs = await detect_multiple_dogs(image)
317
 
318
  if len(dogs) == 0:
319
- return "No dogs detected in the image. Please upload a clear image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
 
 
 
 
 
320
  elif len(dogs) == 1:
321
  cropped_image, _, box = dogs[0]
322
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
@@ -338,8 +350,9 @@ async def process_multiple_dogs_result(dogs, image):
338
  for i, (cropped_image, _, box) in enumerate(dogs, 1):
339
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
340
 
341
- draw.rectangle(box, outline="red", width=3)
342
- draw.text((box[0], box[1]), f"Dog {i}", fill="yellow", font=font)
 
343
 
344
  if top1_prob >= 0.5:
345
  breed = topk_breeds[0]
@@ -366,8 +379,9 @@ Dog {i}: Detected with moderate confidence. Here are the top 3 possible breeds:
366
  async def process_single_dog_result(top1_prob, topk_breeds, topk_probs_percent, image, box):
367
  annotated_image = image.copy()
368
  draw = ImageDraw.Draw(annotated_image)
369
- draw.rectangle(box, outline="red", width=3)
370
- draw.text((box[0], box[1]), "Dog", fill="yellow", font=ImageFont.load_default())
 
371
 
372
  if top1_prob >= 0.5:
373
  breed = topk_breeds[0]
@@ -387,6 +401,16 @@ async def process_single_dog_result(top1_prob, topk_breeds, topk_probs_percent,
387
  else:
388
  return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
389
 
 
 
 
 
 
 
 
 
 
 
390
  async def show_details(choice):
391
  if not choice:
392
  return "Please select a breed to view details."
 
283
  topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
284
  return top1_prob, topk_breeds, topk_probs_percent
285
 
286
+
287
  async def detect_multiple_dogs(image):
288
  try:
 
289
  img = image.copy()
290
  img.thumbnail((640, 640))
291
 
292
+ results = model_yolo(img, conf=0.2) # 降低閾值以檢測更多狗
293
  dogs = []
294
  for result in results:
295
  for box in result.boxes:
 
298
  confidence = box.conf.item()
299
  cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
300
  dogs.append((cropped_image, confidence, xyxy))
301
+
302
+ # 如果只檢測到一隻狗,嘗試檢測其他可能的狗
303
+ if len(dogs) == 1:
304
+ # 使用整張圖像進行品種預測
305
+ full_image_prob, full_image_breeds, _ = await predict_single_dog(image)
306
+ if full_image_prob >= 0.3 and full_image_breeds[0] != dogs[0][0]:
307
+ # 如果整張圖像的預測結果不同且置信度較高,添加為第二隻狗
308
+ dogs.append((image, full_image_prob, [0, 0, image.width, image.height]))
309
+
310
  return dogs
311
  except Exception as e:
312
  print(f"Error in detect_multiple_dogs: {e}")
 
320
  if isinstance(image, np.ndarray):
321
  image = Image.fromarray(image)
322
 
 
323
  dogs = await detect_multiple_dogs(image)
324
 
325
  if len(dogs) == 0:
326
+ # 如果沒有檢測到狗,嘗試對整張圖像進行預測
327
+ top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
328
+ if top1_prob >= 0.3:
329
+ return await process_single_dog_result(top1_prob, topk_breeds, topk_probs_percent, image, [0, 0, image.width, image.height])
330
+ else:
331
+ return "No dogs detected in the image. Please upload a clear image of a dog.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
332
  elif len(dogs) == 1:
333
  cropped_image, _, box = dogs[0]
334
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
 
350
  for i, (cropped_image, _, box) in enumerate(dogs, 1):
351
  top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
352
 
353
+ optimized_box = optimize_box(box, image.size)
354
+ draw.rectangle(optimized_box, outline="red", width=3)
355
+ draw.text((optimized_box[0], optimized_box[1]), f"Dog {i}", fill="yellow", font=font)
356
 
357
  if top1_prob >= 0.5:
358
  breed = topk_breeds[0]
 
379
  async def process_single_dog_result(top1_prob, topk_breeds, topk_probs_percent, image, box):
380
  annotated_image = image.copy()
381
  draw = ImageDraw.Draw(annotated_image)
382
+ optimized_box = optimize_box(box, image.size)
383
+ draw.rectangle(optimized_box, outline="red", width=3)
384
+ draw.text((optimized_box[0], optimized_box[1]), "Dog", fill="yellow", font=ImageFont.load_default())
385
 
386
  if top1_prob >= 0.5:
387
  breed = topk_breeds[0]
 
401
  else:
402
  return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
403
 
404
+ def optimize_box(box, image_size):
405
+ x1, y1, x2, y2 = box
406
+ w, h = image_size
407
+ # 擴大邊界框以確保完整包含狗
408
+ x1 = max(0, x1 - 10)
409
+ y1 = max(0, y1 - 10)
410
+ x2 = min(w, x2 + 10)
411
+ y2 = min(h, y2 + 10)
412
+ return [x1, y1, x2, y2]
413
+
414
  async def show_details(choice):
415
  if not choice:
416
  return "Please select a breed to view details."