Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -165,165 +165,165 @@ def _predict_single_dog(image):
|
|
165 |
return top1_prob, topk_breeds, topk_probs_percent
|
166 |
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
|
188 |
-
|
189 |
|
190 |
-
|
191 |
-
|
192 |
|
193 |
-
#
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
|
247 |
|
248 |
-
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.5):
|
249 |
-
|
250 |
-
|
251 |
|
252 |
-
|
253 |
-
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
|
267 |
-
|
268 |
-
|
269 |
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
|
323 |
-
|
324 |
|
325 |
-
|
326 |
-
|
327 |
|
328 |
# async def predict(image):
|
329 |
# if image is None:
|
@@ -396,166 +396,6 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, me
|
|
396 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
397 |
|
398 |
|
399 |
-
# async def process_single_dog(image):
|
400 |
-
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
401 |
-
# if top1_prob < 0.2:
|
402 |
-
# initial_state = {
|
403 |
-
# "explanation": "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.",
|
404 |
-
# "buttons": [],
|
405 |
-
# "show_back": False
|
406 |
-
# }
|
407 |
-
# return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
408 |
-
|
409 |
-
# breed = topk_breeds[0]
|
410 |
-
# description = get_dog_description(breed)
|
411 |
-
|
412 |
-
# if top1_prob >= 0.5:
|
413 |
-
# formatted_description = format_description(description, breed)
|
414 |
-
# initial_state = {
|
415 |
-
# "explanation": formatted_description,
|
416 |
-
# "buttons": [],
|
417 |
-
# "show_back": False
|
418 |
-
# }
|
419 |
-
# return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
420 |
-
# else:
|
421 |
-
# explanation = (
|
422 |
-
# f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
423 |
-
# f"1. **{topk_breeds[0]}** ({topk_probs_percent[0]} confidence)\n"
|
424 |
-
# f"2. **{topk_breeds[1]}** ({topk_probs_percent[1]} confidence)\n"
|
425 |
-
# f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
426 |
-
# "Click on a button to view more information about the breed."
|
427 |
-
# )
|
428 |
-
# buttons = [
|
429 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
|
430 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
|
431 |
-
# gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
432 |
-
# ]
|
433 |
-
# initial_state = {
|
434 |
-
# "explanation": explanation,
|
435 |
-
# "buttons": buttons,
|
436 |
-
# "show_back": True
|
437 |
-
# }
|
438 |
-
# return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
439 |
-
|
440 |
-
# def show_details(choice, previous_output, initial_state):
|
441 |
-
# if not choice:
|
442 |
-
# return previous_output, gr.update(visible=True), initial_state
|
443 |
-
|
444 |
-
# try:
|
445 |
-
# breed = choice.split("More about ")[-1]
|
446 |
-
# description = get_dog_description(breed)
|
447 |
-
# formatted_description = format_description(description, breed)
|
448 |
-
# return formatted_description, gr.update(visible=True), initial_state
|
449 |
-
# except Exception as e:
|
450 |
-
# error_msg = f"An error occurred while showing details: {e}"
|
451 |
-
# print(error_msg) # 添加日誌輸出
|
452 |
-
# return error_msg, gr.update(visible=True), initial_state
|
453 |
-
|
454 |
-
# # 介面部分
|
455 |
-
# with gr.Blocks() as iface:
|
456 |
-
# gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
457 |
-
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
458 |
-
|
459 |
-
# with gr.Row():
|
460 |
-
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
461 |
-
# output_image = gr.Image(label="Annotated Image")
|
462 |
-
|
463 |
-
# output = gr.Markdown(label="Prediction Results")
|
464 |
-
|
465 |
-
# with gr.Row():
|
466 |
-
# btn1 = gr.Button("View More 1", visible=False)
|
467 |
-
# btn2 = gr.Button("View More 2", visible=False)
|
468 |
-
# btn3 = gr.Button("View More 3", visible=False)
|
469 |
-
|
470 |
-
# back_button = gr.Button("Back", visible=False)
|
471 |
-
|
472 |
-
# initial_state = gr.State()
|
473 |
-
|
474 |
-
# input_image.change(
|
475 |
-
# predict,
|
476 |
-
# inputs=input_image,
|
477 |
-
# outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
478 |
-
# )
|
479 |
-
|
480 |
-
# for btn in [btn1, btn2, btn3]:
|
481 |
-
# btn.click(
|
482 |
-
# show_details,
|
483 |
-
# inputs=[btn, output, initial_state],
|
484 |
-
# outputs=[output, back_button, initial_state]
|
485 |
-
# )
|
486 |
-
|
487 |
-
# back_button.click(
|
488 |
-
# lambda state: (state["explanation"],
|
489 |
-
# state["buttons"][0] if len(state["buttons"]) > 0 else gr.update(visible=False),
|
490 |
-
# state["buttons"][1] if len(state["buttons"]) > 1 else gr.update(visible=False),
|
491 |
-
# gr.update(visible=state["show_back"])),
|
492 |
-
# inputs=[initial_state],
|
493 |
-
# outputs=[output, btn1, btn2, btn3, back_button]
|
494 |
-
# )
|
495 |
-
|
496 |
-
# gr.Examples(
|
497 |
-
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
498 |
-
# inputs=input_image
|
499 |
-
# )
|
500 |
-
|
501 |
-
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
502 |
-
|
503 |
-
# if __name__ == "__main__":
|
504 |
-
# iface.launch()
|
505 |
-
|
506 |
-
|
507 |
-
async def predict(image):
|
508 |
-
if image is None:
|
509 |
-
return "Please upload an image to start.", None, [], gr.update(visible=False), None
|
510 |
-
|
511 |
-
try:
|
512 |
-
if isinstance(image, np.ndarray):
|
513 |
-
image = Image.fromarray(image)
|
514 |
-
|
515 |
-
dogs = await detect_multiple_dogs(image)
|
516 |
-
|
517 |
-
if len(dogs) <= 1:
|
518 |
-
return await process_single_dog(image)
|
519 |
-
|
520 |
-
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
521 |
-
explanations = []
|
522 |
-
buttons = []
|
523 |
-
annotated_image = image.copy()
|
524 |
-
draw = ImageDraw.Draw(annotated_image)
|
525 |
-
font = ImageFont.load_default()
|
526 |
-
|
527 |
-
for i, (cropped_image, _, box) in enumerate(dogs):
|
528 |
-
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
529 |
-
color = color_list[i % len(color_list)]
|
530 |
-
draw.rectangle(box, outline=color, width=3)
|
531 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
532 |
-
|
533 |
-
breed = topk_breeds[0]
|
534 |
-
if top1_prob >= 0.5:
|
535 |
-
description = get_dog_description(breed)
|
536 |
-
formatted_description = format_description(description, breed)
|
537 |
-
explanations.append(f"Dog {i+1}: {formatted_description}")
|
538 |
-
else:
|
539 |
-
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
540 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
541 |
-
explanations.append(dog_explanation)
|
542 |
-
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
543 |
-
|
544 |
-
final_explanation = "\n\n".join(explanations)
|
545 |
-
if buttons:
|
546 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
547 |
-
|
548 |
-
initial_state = {
|
549 |
-
"explanation": final_explanation,
|
550 |
-
"buttons": buttons,
|
551 |
-
"show_back": bool(buttons)
|
552 |
-
}
|
553 |
-
return final_explanation, annotated_image, buttons, gr.update(visible=bool(buttons)), initial_state
|
554 |
-
|
555 |
-
except Exception as e:
|
556 |
-
error_msg = f"An error occurred: {str(e)}"
|
557 |
-
print(error_msg) # 添加日誌輸出
|
558 |
-
return error_msg, None, [], gr.update(visible=False), None
|
559 |
|
560 |
async def process_single_dog(image):
|
561 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
@@ -565,7 +405,7 @@ async def process_single_dog(image):
|
|
565 |
"buttons": [],
|
566 |
"show_back": False
|
567 |
}
|
568 |
-
return initial_state["explanation"], None,
|
569 |
|
570 |
breed = topk_breeds[0]
|
571 |
description = get_dog_description(breed)
|
@@ -577,7 +417,7 @@ async def process_single_dog(image):
|
|
577 |
"buttons": [],
|
578 |
"show_back": False
|
579 |
}
|
580 |
-
return formatted_description, image,
|
581 |
else:
|
582 |
explanation = (
|
583 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
@@ -586,13 +426,17 @@ async def process_single_dog(image):
|
|
586 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
587 |
"Click on a button to view more information about the breed."
|
588 |
)
|
589 |
-
buttons = [
|
|
|
|
|
|
|
|
|
590 |
initial_state = {
|
591 |
"explanation": explanation,
|
592 |
"buttons": buttons,
|
593 |
"show_back": True
|
594 |
}
|
595 |
-
return explanation, image, buttons, gr.update(visible=True), initial_state
|
596 |
|
597 |
def show_details(choice, previous_output, initial_state):
|
598 |
if not choice:
|
@@ -608,6 +452,7 @@ def show_details(choice, previous_output, initial_state):
|
|
608 |
print(error_msg) # 添加日誌輸出
|
609 |
return error_msg, gr.update(visible=True), initial_state
|
610 |
|
|
|
611 |
with gr.Blocks() as iface:
|
612 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
613 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
@@ -618,54 +463,43 @@ with gr.Blocks() as iface:
|
|
618 |
|
619 |
output = gr.Markdown(label="Prediction Results")
|
620 |
|
621 |
-
|
|
|
|
|
|
|
622 |
|
623 |
back_button = gr.Button("Back", visible=False)
|
624 |
|
625 |
initial_state = gr.State()
|
626 |
|
627 |
-
def create_buttons(button_texts):
|
628 |
-
buttons = []
|
629 |
-
for text in button_texts:
|
630 |
-
button = gr.Button(text)
|
631 |
-
button.click(
|
632 |
-
show_details,
|
633 |
-
inputs=[button, output, initial_state],
|
634 |
-
outputs=[output, back_button, initial_state]
|
635 |
-
)
|
636 |
-
buttons.append(button)
|
637 |
-
return buttons
|
638 |
-
|
639 |
-
def update_ui(explanation, image, button_texts, show_back, state):
|
640 |
-
button_container.clear()
|
641 |
-
buttons = create_buttons(button_texts)
|
642 |
-
return explanation, image, *buttons, gr.update(visible=show_back), state
|
643 |
-
|
644 |
input_image.change(
|
645 |
predict,
|
646 |
inputs=input_image,
|
647 |
-
outputs=[output, output_image,
|
648 |
-
).then(
|
649 |
-
update_ui,
|
650 |
-
inputs=[output, output_image, button_container, back_button, initial_state],
|
651 |
-
outputs=[output, output_image] + [button_container] * 9 + [back_button, initial_state]
|
652 |
)
|
653 |
-
|
654 |
-
|
655 |
-
|
|
|
|
|
|
|
|
|
656 |
|
657 |
back_button.click(
|
658 |
-
|
|
|
|
|
|
|
659 |
inputs=[initial_state],
|
660 |
-
outputs=[output,
|
661 |
)
|
662 |
-
|
663 |
gr.Examples(
|
664 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
665 |
inputs=input_image
|
666 |
)
|
667 |
-
|
668 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
669 |
|
670 |
-
if __name__ == "__main__":
|
671 |
-
|
|
|
165 |
return top1_prob, topk_breeds, topk_probs_percent
|
166 |
|
167 |
|
168 |
+
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4):
|
169 |
+
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
170 |
+
dogs = []
|
171 |
+
for box in results.boxes:
|
172 |
+
if box.cls == 16: # COCO 資料集中狗的類別是 16
|
173 |
+
xyxy = box.xyxy[0].tolist()
|
174 |
+
confidence = box.conf.item()
|
175 |
+
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
176 |
+
dogs.append((cropped_image, confidence, xyxy))
|
177 |
+
return dogs
|
178 |
|
179 |
|
180 |
+
async def predict(image):
|
181 |
+
if image is None:
|
182 |
+
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
183 |
|
184 |
+
try:
|
185 |
+
if isinstance(image, np.ndarray):
|
186 |
+
image = Image.fromarray(image)
|
187 |
|
188 |
+
dogs = await detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4)
|
189 |
|
190 |
+
if len(dogs) <= 1:
|
191 |
+
return await process_single_dog(image)
|
192 |
|
193 |
+
# 多狗情境
|
194 |
+
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
195 |
+
explanations = []
|
196 |
+
buttons = []
|
197 |
+
annotated_image = image.copy()
|
198 |
+
draw = ImageDraw.Draw(annotated_image)
|
199 |
+
font = ImageFont.load_default()
|
200 |
|
201 |
+
for i, (cropped_image, _, box) in enumerate(dogs):
|
202 |
+
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
203 |
+
color = color_list[i % len(color_list)]
|
204 |
+
draw.rectangle(box, outline=color, width=3)
|
205 |
+
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
206 |
|
207 |
+
breed = topk_breeds[0]
|
208 |
+
if top1_prob >= 0.5:
|
209 |
+
description = get_dog_description(breed)
|
210 |
+
formatted_description = format_description(description, breed)
|
211 |
+
explanations.append(f"Dog {i+1}: {formatted_description}")
|
212 |
+
elif top1_prob >= 0.2:
|
213 |
+
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
214 |
+
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
215 |
+
explanations.append(dog_explanation)
|
216 |
+
buttons.extend([gr.update(visible=True, value=f"Dog {i+1}: More about {breed}") for breed in topk_breeds[:3]])
|
217 |
+
else:
|
218 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
219 |
|
220 |
+
final_explanation = "\n\n".join(explanations)
|
221 |
+
if buttons:
|
222 |
+
final_explanation += "\n\nClick on a button to view more information about the breed."
|
223 |
+
initial_state = {
|
224 |
+
"explanation": final_explanation,
|
225 |
+
"buttons": buttons,
|
226 |
+
"show_back": True
|
227 |
+
}
|
228 |
+
return (final_explanation, annotated_image,
|
229 |
+
buttons[0] if len(buttons) > 0 else gr.update(visible=False),
|
230 |
+
buttons[1] if len(buttons) > 1 else gr.update(visible=False),
|
231 |
+
buttons[2] if len(buttons) > 2 else gr.update(visible=False),
|
232 |
+
gr.update(visible=True),
|
233 |
+
initial_state)
|
234 |
+
else:
|
235 |
+
initial_state = {
|
236 |
+
"explanation": final_explanation,
|
237 |
+
"buttons": [],
|
238 |
+
"show_back": False
|
239 |
+
}
|
240 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
241 |
|
242 |
+
except Exception as e:
|
243 |
+
error_msg = f"An error occurred: {str(e)}"
|
244 |
+
print(error_msg) # 添加日誌輸出
|
245 |
+
return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
246 |
|
247 |
|
248 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.5):
|
249 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
250 |
+
# dogs = []
|
251 |
|
252 |
+
# image_area = image.width * image.height
|
253 |
+
# min_area_ratio = 0.005 # 最小檢測面積佔整個圖像的比例
|
254 |
|
255 |
+
# for box in results.boxes:
|
256 |
+
# if box.cls == 16: # COCO 數據集中狗的類別是 16
|
257 |
+
# xyxy = box.xyxy[0].tolist()
|
258 |
+
# area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
|
259 |
+
# if area / image_area >= min_area_ratio:
|
260 |
+
# confidence = box.conf.item()
|
261 |
+
# dogs.append((xyxy, confidence))
|
262 |
|
263 |
+
# if dogs:
|
264 |
+
# boxes = torch.tensor([dog[0] for dog in dogs])
|
265 |
+
# scores = torch.tensor([dog[1] for dog in dogs])
|
266 |
|
267 |
+
# # 應用 NMS
|
268 |
+
# keep = nms(boxes, scores, iou_threshold)
|
269 |
|
270 |
+
# merged_dogs = []
|
271 |
+
# for i in keep:
|
272 |
+
# xyxy = boxes[i].tolist()
|
273 |
+
# confidence = scores[i].item()
|
274 |
+
# merged_dogs.append((xyxy, confidence))
|
275 |
|
276 |
+
# # 後處理:分離過於接近的檢測框
|
277 |
+
# final_dogs = []
|
278 |
+
# while merged_dogs:
|
279 |
+
# base_dog = merged_dogs.pop(0)
|
280 |
+
# to_merge = [base_dog]
|
281 |
|
282 |
+
# i = 0
|
283 |
+
# while i < len(merged_dogs):
|
284 |
+
# iou = box_iou(torch.tensor([base_dog[0]]), torch.tensor([merged_dogs[i][0]]))[0][0].item()
|
285 |
+
# if iou > merge_threshold:
|
286 |
+
# to_merge.append(merged_dogs.pop(i))
|
287 |
+
# else:
|
288 |
+
# i += 1
|
289 |
|
290 |
+
# if len(to_merge) == 1:
|
291 |
+
# final_dogs.append(base_dog)
|
292 |
+
# else:
|
293 |
+
# # 如果檢測到多個重疊框,嘗試分離它們
|
294 |
+
# centers = torch.tensor([[((box[0] + box[2]) / 2, (box[1] + box[3]) / 2)] for box, _ in to_merge])
|
295 |
+
# distances = torch.cdist(centers, centers)
|
296 |
|
297 |
+
# if torch.any(distances > 0): # 確保不是完全重疊
|
298 |
+
# max_distance = distances.max()
|
299 |
+
# if max_distance > (base_dog[0][2] - base_dog[0][0]) * 0.5: # 如果最大距離大於框寬度的一半
|
300 |
+
# final_dogs.extend(to_merge)
|
301 |
+
# else:
|
302 |
+
# # 合併為一個框
|
303 |
+
# merged_box = torch.tensor([box for box, _ in to_merge]).mean(dim=0)
|
304 |
+
# merged_confidence = max(conf for _, conf in to_merge)
|
305 |
+
# final_dogs.append((merged_box.tolist(), merged_confidence))
|
306 |
+
# else:
|
307 |
+
# # 完全重疊的情況,保留置信度最高的
|
308 |
+
# best_dog = max(to_merge, key=lambda x: x[1])
|
309 |
+
# final_dogs.append(best_dog)
|
310 |
|
311 |
+
# # 擴展邊界框並創建剪裁的圖像
|
312 |
+
# expanded_dogs = []
|
313 |
+
# for xyxy, confidence in final_dogs:
|
314 |
+
# expanded_xyxy = [
|
315 |
+
# max(0, xyxy[0] - 20),
|
316 |
+
# max(0, xyxy[1] - 20),
|
317 |
+
# min(image.width, xyxy[2] + 20),
|
318 |
+
# min(image.height, xyxy[3] + 20)
|
319 |
+
# ]
|
320 |
+
# cropped_image = image.crop(expanded_xyxy)
|
321 |
+
# expanded_dogs.append((cropped_image, confidence, expanded_xyxy))
|
322 |
|
323 |
+
# return expanded_dogs
|
324 |
|
325 |
+
# # 如果沒有檢測到狗狗,返回整張圖片
|
326 |
+
# return [(image, 1.0, [0, 0, image.width, image.height])]
|
327 |
|
328 |
# async def predict(image):
|
329 |
# if image is None:
|
|
|
396 |
# return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
|
397 |
|
398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
async def process_single_dog(image):
|
401 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
|
|
405 |
"buttons": [],
|
406 |
"show_back": False
|
407 |
}
|
408 |
+
return initial_state["explanation"], None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
409 |
|
410 |
breed = topk_breeds[0]
|
411 |
description = get_dog_description(breed)
|
|
|
417 |
"buttons": [],
|
418 |
"show_back": False
|
419 |
}
|
420 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), initial_state
|
421 |
else:
|
422 |
explanation = (
|
423 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
|
|
426 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
427 |
"Click on a button to view more information about the breed."
|
428 |
)
|
429 |
+
buttons = [
|
430 |
+
gr.update(visible=True, value=f"More about {topk_breeds[0]}"),
|
431 |
+
gr.update(visible=True, value=f"More about {topk_breeds[1]}"),
|
432 |
+
gr.update(visible=True, value=f"More about {topk_breeds[2]}")
|
433 |
+
]
|
434 |
initial_state = {
|
435 |
"explanation": explanation,
|
436 |
"buttons": buttons,
|
437 |
"show_back": True
|
438 |
}
|
439 |
+
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
440 |
|
441 |
def show_details(choice, previous_output, initial_state):
|
442 |
if not choice:
|
|
|
452 |
print(error_msg) # 添加日誌輸出
|
453 |
return error_msg, gr.update(visible=True), initial_state
|
454 |
|
455 |
+
# 介面部分
|
456 |
with gr.Blocks() as iface:
|
457 |
gr.HTML("<h1 style='text-align: center;'>🐶 Dog Breed Classifier 🔍</h1>")
|
458 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
|
|
463 |
|
464 |
output = gr.Markdown(label="Prediction Results")
|
465 |
|
466 |
+
with gr.Row():
|
467 |
+
btn1 = gr.Button("View More 1", visible=False)
|
468 |
+
btn2 = gr.Button("View More 2", visible=False)
|
469 |
+
btn3 = gr.Button("View More 3", visible=False)
|
470 |
|
471 |
back_button = gr.Button("Back", visible=False)
|
472 |
|
473 |
initial_state = gr.State()
|
474 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
input_image.change(
|
476 |
predict,
|
477 |
inputs=input_image,
|
478 |
+
outputs=[output, output_image, btn1, btn2, btn3, back_button, initial_state]
|
|
|
|
|
|
|
|
|
479 |
)
|
480 |
+
|
481 |
+
for btn in [btn1, btn2, btn3]:
|
482 |
+
btn.click(
|
483 |
+
show_details,
|
484 |
+
inputs=[btn, output, initial_state],
|
485 |
+
outputs=[output, back_button, initial_state]
|
486 |
+
)
|
487 |
|
488 |
back_button.click(
|
489 |
+
lambda state: (state["explanation"],
|
490 |
+
state["buttons"][0] if len(state["buttons"]) > 0 else gr.update(visible=False),
|
491 |
+
state["buttons"][1] if len(state["buttons"]) > 1 else gr.update(visible=False),
|
492 |
+
gr.update(visible=state["show_back"])),
|
493 |
inputs=[initial_state],
|
494 |
+
outputs=[output, btn1, btn2, btn3, back_button]
|
495 |
)
|
496 |
+
|
497 |
gr.Examples(
|
498 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
499 |
inputs=input_image
|
500 |
)
|
501 |
+
|
502 |
gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
503 |
|
504 |
+
if __name__ == "__main__":
|
505 |
+
iface.launch()
|