DawnC commited on
Commit
a84fce6
1 Parent(s): 4235b93

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -7
app.py CHANGED
@@ -243,25 +243,30 @@ def _predict_single_dog(image):
243
  # print(error_msg) # 添加日誌輸出
244
  # return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
245
 
246
- async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, merge_threshold=0.3):
247
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
248
  dogs = []
249
  boxes = []
250
  confidences = []
251
 
 
 
 
252
  for box in results.boxes:
253
  if box.cls == 16: # COCO 數據集中狗的類別是 16
254
  xyxy = box.xyxy[0].tolist()
255
- confidence = box.conf.item()
256
- boxes.append(torch.tensor(xyxy))
257
- confidences.append(confidence)
 
 
258
 
259
  if boxes:
260
  boxes = torch.stack(boxes)
261
  confidences = torch.tensor(confidences)
262
 
263
- # 應用非極大值抑制 (NMS)
264
- keep = nms(boxes, confidences, iou_threshold)
265
 
266
  for i in keep:
267
  xyxy = boxes[i].tolist()
@@ -293,9 +298,32 @@ async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.4, me
293
  merged_image = image.crop(merged_box.tolist())
294
  merged_dogs.append((merged_image, merged_confidence, merged_box.tolist()))
295
 
 
 
 
 
296
  return merged_dogs
297
 
298
- return []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299
 
300
  async def predict(image):
301
  if image is None:
 
243
  # print(error_msg) # 添加日誌輸出
244
  # return error_msg, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), None
245
 
246
+ async def detect_multiple_dogs(image, conf_threshold=0.1, iou_threshold=0.5, merge_threshold=0.2):
247
  results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
248
  dogs = []
249
  boxes = []
250
  confidences = []
251
 
252
+ image_area = image.width * image.height
253
+ min_area_ratio = 0.005 # 最小檢測面積佔整個圖像的比例
254
+
255
  for box in results.boxes:
256
  if box.cls == 16: # COCO 數據集中狗的類別是 16
257
  xyxy = box.xyxy[0].tolist()
258
+ area = (xyxy[2] - xyxy[0]) * (xyxy[3] - xyxy[1])
259
+ if area / image_area >= min_area_ratio:
260
+ confidence = box.conf.item()
261
+ boxes.append(torch.tensor(xyxy))
262
+ confidences.append(confidence)
263
 
264
  if boxes:
265
  boxes = torch.stack(boxes)
266
  confidences = torch.tensor(confidences)
267
 
268
+ # 應用軟 NMS
269
+ keep = soft_nms(boxes, confidences, iou_threshold=iou_threshold, sigma=0.5)
270
 
271
  for i in keep:
272
  xyxy = boxes[i].tolist()
 
298
  merged_image = image.crop(merged_box.tolist())
299
  merged_dogs.append((merged_image, merged_confidence, merged_box.tolist()))
300
 
301
+ # 後處理:限制檢測到的狗狗數量
302
+ if len(merged_dogs) > 5:
303
+ merged_dogs = sorted(merged_dogs, key=lambda x: x[1], reverse=True)[:5]
304
+
305
  return merged_dogs
306
 
307
+ # 如果沒有檢測到狗狗,使用備用分類器
308
+ return await fallback_classifier(image)
309
+
310
+ async def fallback_classifier(image):
311
+ # 使用預訓練的 ResNet 或其他適合的分類器
312
+ transform = transforms.Compose([
313
+ transforms.Resize((224, 224)),
314
+ transforms.ToTensor(),
315
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
316
+ ])
317
+ img_tensor = transform(image).unsqueeze(0)
318
+
319
+ with torch.no_grad():
320
+ output = fallback_model(img_tensor)
321
+ confidence, predicted = torch.max(output, 1)
322
+
323
+ if confidence.item() > 0.5: # 設置一個合適的閾值
324
+ return [(image, confidence.item(), [0, 0, image.width, image.height])]
325
+ else:
326
+ return []
327
 
328
  async def predict(image):
329
  if image is None: