Spaces:
Running
on
Zero
Running
on
Zero
Update scoring_calculation_system.py
Browse files- scoring_calculation_system.py +49 -52
scoring_calculation_system.py
CHANGED
@@ -1469,80 +1469,77 @@ def calculate_final_weighted_score(
|
|
1469 |
adaptability_bonus: float
|
1470 |
) -> float:
|
1471 |
"""
|
1472 |
-
|
1473 |
"""
|
1474 |
-
#
|
1475 |
base_weights = {
|
1476 |
-
'space': 0.35, #
|
1477 |
-
'exercise': 0.25,
|
1478 |
'grooming': 0.15,
|
1479 |
'experience': 0.15,
|
1480 |
'health': 0.07,
|
1481 |
-
'noise': 0.03
|
1482 |
}
|
|
|
|
|
|
|
1483 |
|
1484 |
-
#
|
1485 |
-
|
1486 |
-
|
1487 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1488 |
weighted_base = sum(score * base_weights[category] for category, score in scores.items())
|
1489 |
|
1490 |
-
#
|
1491 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1492 |
|
1493 |
-
#
|
1494 |
-
raw_score = (weighted_base * 0.
|
1495 |
-
|
1496 |
-
# 6. 分數轉換 - 使用更激進的轉換函數
|
1497 |
-
return amplify_score_extreme(raw_score)
|
1498 |
|
1499 |
-
|
1500 |
-
|
1501 |
-
計算條件特殊化加分,強化極端條件的影響
|
1502 |
-
"""
|
1503 |
-
bonus = 0.0
|
1504 |
-
|
1505 |
-
# 居住空間極端匹配
|
1506 |
-
if user_prefs.living_space == 'apartment':
|
1507 |
-
if breed_info['Size'] == 'Small' and scores['noise'] > 0.8:
|
1508 |
-
bonus += 0.25 # 顯著獎勵適合公寓的小型安靜犬種
|
1509 |
-
elif breed_info['Size'] in ['Large', 'Giant']:
|
1510 |
-
bonus -= 0.35 # 嚴重懲罰大型犬
|
1511 |
-
|
1512 |
-
# 美容需求匹配
|
1513 |
-
if user_prefs.grooming_commitment == 'low':
|
1514 |
-
if breed_info.get('Grooming Needs') == 'HIGH':
|
1515 |
-
bonus -= 0.30 # 嚴重懲罰高美容需求
|
1516 |
-
|
1517 |
-
# 經驗等級匹配
|
1518 |
-
if user_prefs.experience_level == 'beginner':
|
1519 |
-
if breed_info.get('Care Level') == 'HIGH':
|
1520 |
-
bonus -= 0.25
|
1521 |
-
elif user_prefs.experience_level == 'advanced':
|
1522 |
-
if breed_info.get('Care Level') == 'LOW':
|
1523 |
-
bonus -= 0.20
|
1524 |
|
1525 |
-
return bonus
|
1526 |
|
1527 |
def amplify_score_extreme(score: float) -> float:
|
1528 |
"""
|
1529 |
-
|
1530 |
"""
|
1531 |
-
#
|
1532 |
-
base_min = 0.65
|
1533 |
-
base_max = 0.
|
1534 |
|
1535 |
-
#
|
1536 |
normalized = (score - 0.5) / 0.5
|
1537 |
-
amplified = math.pow(abs(normalized), 1.2) * math.copysign(1, normalized)
|
1538 |
|
1539 |
# S型曲線轉換
|
1540 |
-
sigmoid = 1 / (1 + math.exp(-
|
1541 |
|
1542 |
# 映射到目標範圍
|
1543 |
final = base_min + (base_max - base_min) * sigmoid
|
1544 |
|
1545 |
-
|
1546 |
-
noise = random.uniform(-0.002, 0.002)
|
1547 |
-
|
1548 |
-
return round(min(base_max, max(base_min, final + noise)), 4)
|
|
|
1469 |
adaptability_bonus: float
|
1470 |
) -> float:
|
1471 |
"""
|
1472 |
+
優化的最終分數計算系統,強化條件變化的影響力
|
1473 |
"""
|
1474 |
+
# 基礎權重 - 更極端的差異
|
1475 |
base_weights = {
|
1476 |
+
'space': 0.35, # 極度重視空間匹配
|
1477 |
+
'exercise': 0.25, # 重視運動需求
|
1478 |
'grooming': 0.15,
|
1479 |
'experience': 0.15,
|
1480 |
'health': 0.07,
|
1481 |
+
'noise': 0.03
|
1482 |
}
|
1483 |
+
|
1484 |
+
# 條件特殊化評分
|
1485 |
+
special_conditions = 0.0
|
1486 |
|
1487 |
+
# 極端條件判定
|
1488 |
+
if user_prefs.living_space == 'apartment':
|
1489 |
+
if breed_info['Size'] == 'Large':
|
1490 |
+
special_conditions -= 0.35 # 大型犬在公寓極度不適合
|
1491 |
+
elif breed_info['Size'] == 'Small':
|
1492 |
+
special_conditions += 0.15 # 小型犬在公寓加分
|
1493 |
+
|
1494 |
+
# 運動需求極端匹配
|
1495 |
+
exercise_needs = breed_info.get('Exercise_Needs', 'MODERATE').upper()
|
1496 |
+
if user_prefs.exercise_time > 120: # 高運動量
|
1497 |
+
if exercise_needs in ['VERY HIGH', 'HIGH']:
|
1498 |
+
special_conditions += 0.20
|
1499 |
+
elif exercise_needs == 'LOW':
|
1500 |
+
special_conditions -= 0.25
|
1501 |
+
elif user_prefs.exercise_time < 45: # 低運動量
|
1502 |
+
if exercise_needs in ['VERY HIGH', 'HIGH']:
|
1503 |
+
special_conditions -= 0.25
|
1504 |
+
elif exercise_needs == 'LOW':
|
1505 |
+
special_conditions += 0.15
|
1506 |
+
|
1507 |
+
# 經驗等級極端匹配
|
1508 |
+
if user_prefs.experience_level == 'beginner':
|
1509 |
+
if breed_info.get('Care_Level') == 'HIGH':
|
1510 |
+
special_conditions -= 0.30
|
1511 |
+
elif user_prefs.experience_level == 'advanced':
|
1512 |
+
if breed_info.get('Care_Level') == 'LOW':
|
1513 |
+
special_conditions -= 0.20
|
1514 |
+
|
1515 |
+
# 計算加權基礎分數
|
1516 |
weighted_base = sum(score * base_weights[category] for category, score in scores.items())
|
1517 |
|
1518 |
+
# 品種特性加成
|
1519 |
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
|
1520 |
|
1521 |
+
# 最終分數計算
|
1522 |
+
raw_score = (weighted_base * 0.65) + (breed_bonus * 0.20) + (adaptability_bonus * 0.10) + (special_conditions * 0.05)
|
|
|
|
|
|
|
1523 |
|
1524 |
+
# 分數轉換 - 使用S型曲線
|
1525 |
+
return amplify_score_extreme(raw_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1526 |
|
|
|
1527 |
|
1528 |
def amplify_score_extreme(score: float) -> float:
|
1529 |
"""
|
1530 |
+
使用S型曲線進行分數轉換,加大差異
|
1531 |
"""
|
1532 |
+
# 基礎範圍
|
1533 |
+
base_min = 0.65
|
1534 |
+
base_max = 0.95
|
1535 |
|
1536 |
+
# 正規化
|
1537 |
normalized = (score - 0.5) / 0.5
|
|
|
1538 |
|
1539 |
# S型曲線轉換
|
1540 |
+
sigmoid = 1 / (1 + math.exp(-normalized * 4))
|
1541 |
|
1542 |
# 映射到目標範圍
|
1543 |
final = base_min + (base_max - base_min) * sigmoid
|
1544 |
|
1545 |
+
return round(min(base_max, max(base_min, final)), 4)
|
|
|
|
|
|