Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -167,34 +167,56 @@ async def predict_single_dog(image):
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
-
async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.6):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
dogs = []
|
173 |
boxes = []
|
174 |
for box in results.boxes:
|
175 |
-
if box.cls == 16: #
|
176 |
xyxy = box.xyxy[0].tolist()
|
177 |
confidence = box.conf.item()
|
178 |
boxes.append((xyxy, confidence))
|
179 |
|
180 |
if not boxes:
|
|
|
181 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
182 |
else:
|
183 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
184 |
-
|
185 |
for box, confidence in nms_boxes:
|
186 |
x1, y1, x2, y2 = box
|
187 |
-
w, h = x2 - x1, y2 - y1
|
188 |
-
x1 = max(0, x1 - w * 0.05)
|
189 |
-
y1 = max(0, y1 - h * 0.05)
|
190 |
-
x2 = min(image.width, x2 + w * 0.05)
|
191 |
-
y2 = min(image.height, y2 + h * 0.05)
|
192 |
cropped_image = image.crop((x1, y1, x2, y2))
|
193 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
194 |
-
|
195 |
return dogs
|
196 |
|
197 |
|
|
|
198 |
def non_max_suppression(boxes, iou_threshold):
|
199 |
keep = []
|
200 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
@@ -266,9 +288,76 @@ async def process_single_dog(image):
|
|
266 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
267 |
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
async def predict(image):
|
270 |
if image is None:
|
271 |
-
return "Please upload an image to start.", None, gr.update(visible=False
|
272 |
|
273 |
try:
|
274 |
if isinstance(image, np.ndarray):
|
@@ -276,62 +365,30 @@ async def predict(image):
|
|
276 |
|
277 |
dogs = await detect_multiple_dogs(image)
|
278 |
|
279 |
-
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
280 |
explanations = []
|
281 |
-
buttons = []
|
282 |
annotated_image = image.copy()
|
283 |
draw = ImageDraw.Draw(annotated_image)
|
284 |
-
|
285 |
-
|
286 |
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
287 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
288 |
-
|
289 |
-
draw.rectangle(box, outline=color, width=3)
|
290 |
-
draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
291 |
-
|
292 |
combined_confidence = detection_confidence * top1_prob
|
293 |
|
294 |
-
if
|
295 |
breed = topk_breeds[0]
|
296 |
description = get_dog_description(breed)
|
297 |
-
|
298 |
-
explanations.append(f"Dog {i+1}: {formatted_description}")
|
299 |
-
elif combined_confidence >= 0.2:
|
300 |
-
dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
301 |
-
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
302 |
-
explanations.append(dog_explanation)
|
303 |
-
buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
304 |
else:
|
305 |
-
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
final_explanation += "\n\nClick on a button to view more information about the breed."
|
310 |
-
initial_state = {
|
311 |
-
"explanation": final_explanation,
|
312 |
-
"buttons": buttons,
|
313 |
-
"show_back": True,
|
314 |
-
"image": annotated_image,
|
315 |
-
"is_multi_dog": len(dogs) > 1,
|
316 |
-
"dogs_info": explanations
|
317 |
-
}
|
318 |
-
return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
319 |
-
else:
|
320 |
-
initial_state = {
|
321 |
-
"explanation": final_explanation,
|
322 |
-
"buttons": [],
|
323 |
-
"show_back": False,
|
324 |
-
"image": annotated_image,
|
325 |
-
"is_multi_dog": len(dogs) > 1,
|
326 |
-
"dogs_info": explanations
|
327 |
-
}
|
328 |
-
return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
329 |
|
330 |
except Exception as e:
|
331 |
-
error_msg = f"
|
332 |
print(error_msg)
|
333 |
-
return error_msg, None
|
334 |
-
|
335 |
|
336 |
|
337 |
def show_details(choice, previous_output, initial_state):
|
|
|
167 |
return top1_prob, topk_breeds, topk_probs_percent
|
168 |
|
169 |
|
170 |
+
# async def detect_multiple_dogs(image, conf_threshold=0.25, iou_threshold=0.6):
|
171 |
+
# results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
172 |
+
# dogs = []
|
173 |
+
# boxes = []
|
174 |
+
# for box in results.boxes:
|
175 |
+
# if box.cls == 16: # COCO dataset class for dog is 16
|
176 |
+
# xyxy = box.xyxy[0].tolist()
|
177 |
+
# confidence = box.conf.item()
|
178 |
+
# boxes.append((xyxy, confidence))
|
179 |
+
|
180 |
+
# if not boxes:
|
181 |
+
# dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
182 |
+
# else:
|
183 |
+
# nms_boxes = non_max_suppression(boxes, iou_threshold)
|
184 |
+
|
185 |
+
# for box, confidence in nms_boxes:
|
186 |
+
# x1, y1, x2, y2 = box
|
187 |
+
# w, h = x2 - x1, y2 - y1
|
188 |
+
# x1 = max(0, x1 - w * 0.05)
|
189 |
+
# y1 = max(0, y1 - h * 0.05)
|
190 |
+
# x2 = min(image.width, x2 + w * 0.05)
|
191 |
+
# y2 = min(image.height, y2 + h * 0.05)
|
192 |
+
# cropped_image = image.crop((x1, y1, x2, y2))
|
193 |
+
# dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
194 |
+
|
195 |
+
# return dogs
|
196 |
+
|
197 |
+
async def detect_multiple_dogs(image, conf_threshold=0.35, iou_threshold=0.5):
|
198 |
results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
|
199 |
dogs = []
|
200 |
boxes = []
|
201 |
for box in results.boxes:
|
202 |
+
if box.cls == 16: # 狗類別
|
203 |
xyxy = box.xyxy[0].tolist()
|
204 |
confidence = box.conf.item()
|
205 |
boxes.append((xyxy, confidence))
|
206 |
|
207 |
if not boxes:
|
208 |
+
# 當沒檢測到狗時,使用完整圖片
|
209 |
dogs.append((image, 1.0, [0, 0, image.width, image.height]))
|
210 |
else:
|
211 |
nms_boxes = non_max_suppression(boxes, iou_threshold)
|
|
|
212 |
for box, confidence in nms_boxes:
|
213 |
x1, y1, x2, y2 = box
|
|
|
|
|
|
|
|
|
|
|
214 |
cropped_image = image.crop((x1, y1, x2, y2))
|
215 |
dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
|
|
|
216 |
return dogs
|
217 |
|
218 |
|
219 |
+
|
220 |
def non_max_suppression(boxes, iou_threshold):
|
221 |
keep = []
|
222 |
boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
|
|
|
288 |
return explanation, image, buttons[0], buttons[1], buttons[2], gr.update(visible=True), initial_state
|
289 |
|
290 |
|
291 |
+
# async def predict(image):
|
292 |
+
# if image is None:
|
293 |
+
# return "Please upload an image to start.", None, gr.update(visible=False, choices=[]), None
|
294 |
+
|
295 |
+
# try:
|
296 |
+
# if isinstance(image, np.ndarray):
|
297 |
+
# image = Image.fromarray(image)
|
298 |
+
|
299 |
+
# dogs = await detect_multiple_dogs(image)
|
300 |
+
|
301 |
+
# color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
302 |
+
# explanations = []
|
303 |
+
# buttons = []
|
304 |
+
# annotated_image = image.copy()
|
305 |
+
# draw = ImageDraw.Draw(annotated_image)
|
306 |
+
# font = ImageFont.load_default()
|
307 |
+
|
308 |
+
# for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
309 |
+
# top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
310 |
+
# color = color_list[i % len(color_list)]
|
311 |
+
# draw.rectangle(box, outline=color, width=3)
|
312 |
+
# draw.text((box[0], box[1]), f"Dog {i+1}", fill=color, font=font)
|
313 |
+
|
314 |
+
# combined_confidence = detection_confidence * top1_prob
|
315 |
+
|
316 |
+
# if top1_prob >= 0.5:
|
317 |
+
# breed = topk_breeds[0]
|
318 |
+
# description = get_dog_description(breed)
|
319 |
+
# formatted_description = format_description(description, breed)
|
320 |
+
# explanations.append(f"Dog {i+1}: {formatted_description}")
|
321 |
+
# elif combined_confidence >= 0.2:
|
322 |
+
# dog_explanation = f"Dog {i+1}: Top 3 possible breeds:\n"
|
323 |
+
# dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
324 |
+
# explanations.append(dog_explanation)
|
325 |
+
# buttons.extend([f"Dog {i+1}: More about {breed}" for breed in topk_breeds[:3]])
|
326 |
+
# else:
|
327 |
+
# explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset. Please upload a clearer image.")
|
328 |
+
|
329 |
+
# final_explanation = "\n\n".join(explanations)
|
330 |
+
# if buttons:
|
331 |
+
# final_explanation += "\n\nClick on a button to view more information about the breed."
|
332 |
+
# initial_state = {
|
333 |
+
# "explanation": final_explanation,
|
334 |
+
# "buttons": buttons,
|
335 |
+
# "show_back": True,
|
336 |
+
# "image": annotated_image,
|
337 |
+
# "is_multi_dog": len(dogs) > 1,
|
338 |
+
# "dogs_info": explanations
|
339 |
+
# }
|
340 |
+
# return final_explanation, annotated_image, gr.update(visible=True, choices=buttons), initial_state
|
341 |
+
# else:
|
342 |
+
# initial_state = {
|
343 |
+
# "explanation": final_explanation,
|
344 |
+
# "buttons": [],
|
345 |
+
# "show_back": False,
|
346 |
+
# "image": annotated_image,
|
347 |
+
# "is_multi_dog": len(dogs) > 1,
|
348 |
+
# "dogs_info": explanations
|
349 |
+
# }
|
350 |
+
# return final_explanation, annotated_image, gr.update(visible=False, choices=[]), initial_state
|
351 |
+
|
352 |
+
# except Exception as e:
|
353 |
+
# error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
|
354 |
+
# print(error_msg)
|
355 |
+
# return error_msg, None, gr.update(visible=False, choices=[]), None
|
356 |
+
|
357 |
+
|
358 |
async def predict(image):
|
359 |
if image is None:
|
360 |
+
return "Please upload an image to start.", None, gr.update(visible=False), None
|
361 |
|
362 |
try:
|
363 |
if isinstance(image, np.ndarray):
|
|
|
365 |
|
366 |
dogs = await detect_multiple_dogs(image)
|
367 |
|
|
|
368 |
explanations = []
|
|
|
369 |
annotated_image = image.copy()
|
370 |
draw = ImageDraw.Draw(annotated_image)
|
371 |
+
|
372 |
+
# 針對每隻狗進行辨識
|
373 |
for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
|
374 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(cropped_image)
|
375 |
+
draw.rectangle(box, outline="#FF0000", width=3) # 標記框選
|
|
|
|
|
|
|
376 |
combined_confidence = detection_confidence * top1_prob
|
377 |
|
378 |
+
if combined_confidence >= 0.5:
|
379 |
breed = topk_breeds[0]
|
380 |
description = get_dog_description(breed)
|
381 |
+
explanations.append(f"Dog {i+1}: {description}")
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
else:
|
383 |
+
explanations.append(f"Dog {i+1}: The image is unclear or the breed is not in the dataset.")
|
384 |
+
|
385 |
+
# 返回最終解釋與圖片
|
386 |
+
return "\n".join(explanations), annotated_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
except Exception as e:
|
389 |
+
error_msg = f"Error: {str(e)}"
|
390 |
print(error_msg)
|
391 |
+
return error_msg, None
|
|
|
392 |
|
393 |
|
394 |
def show_details(choice, previous_output, initial_state):
|