DawnC commited on
Commit
c6c6cdd
1 Parent(s): 57c59a8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -508
app.py CHANGED
@@ -1,506 +1,3 @@
1
- # import os
2
- # import numpy as np
3
- # import torch
4
- # import torch.nn as nn
5
- # import gradio as gr
6
- # import time
7
- # from torchvision.models import efficientnet_v2_m, EfficientNet_V2_M_Weights
8
- # from torchvision.ops import nms, box_iou
9
- # import torch.nn.functional as F
10
- # from torchvision import transforms
11
- # from PIL import Image, ImageDraw, ImageFont, ImageFilter
12
- # from breed_health_info import breed_health_info
13
- # from breed_noise_info import breed_noise_info
14
- # from dog_database import get_dog_description, dog_data
15
- # from scoring_calculation_system import UserPreferences
16
- # from recommendation_html_format import format_recommendation_html, get_breed_recommendations
17
- # from history_manager import UserHistoryManager
18
- # from search_history import create_history_tab, create_history_component
19
- # from styles import get_css_styles
20
- # from breed_detection import create_detection_tab
21
- # from breed_comparison import create_comparison_tab
22
- # from breed_recommendation import create_recommendation_tab
23
- # from html_templates import (
24
- # format_description_html,
25
- # format_single_dog_result,
26
- # format_multiple_breeds_result,
27
- # format_error_message,
28
- # format_warning_html,
29
- # format_multi_dog_container,
30
- # format_breed_details_html,
31
- # get_color_scheme,
32
- # get_akc_breeds_link
33
- # )
34
- # from urllib.parse import quote
35
- # from ultralytics import YOLO
36
- # import asyncio
37
- # import traceback
38
-
39
-
40
- # model_yolo = YOLO('yolov8l.pt')
41
-
42
- # history_manager = UserHistoryManager()
43
-
44
- # dog_breeds = ["Afghan_Hound", "African_Hunting_Dog", "Airedale", "American_Staffordshire_Terrier",
45
- # "Appenzeller", "Australian_Terrier", "Bedlington_Terrier", "Bernese_Mountain_Dog", "Bichon_Frise",
46
- # "Blenheim_Spaniel", "Border_Collie", "Border_Terrier", "Boston_Bull", "Bouvier_Des_Flandres",
47
- # "Brabancon_Griffon", "Brittany_Spaniel", "Cardigan", "Chesapeake_Bay_Retriever",
48
- # "Chihuahua", "Dachshund", "Dandie_Dinmont", "Doberman", "English_Foxhound", "English_Setter",
49
- # "English_Springer", "EntleBucher", "Eskimo_Dog", "French_Bulldog", "German_Shepherd",
50
- # "German_Short-Haired_Pointer", "Gordon_Setter", "Great_Dane", "Great_Pyrenees",
51
- # "Greater_Swiss_Mountain_Dog","Havanese", "Ibizan_Hound", "Irish_Setter", "Irish_Terrier",
52
- # "Irish_Water_Spaniel", "Irish_Wolfhound", "Italian_Greyhound", "Japanese_Spaniel",
53
- # "Kerry_Blue_Terrier", "Labrador_Retriever", "Lakeland_Terrier", "Leonberg", "Lhasa",
54
- # "Maltese_Dog", "Mexican_Hairless", "Newfoundland", "Norfolk_Terrier", "Norwegian_Elkhound",
55
- # "Norwich_Terrier", "Old_English_Sheepdog", "Pekinese", "Pembroke", "Pomeranian",
56
- # "Rhodesian_Ridgeback", "Rottweiler", "Saint_Bernard", "Saluki", "Samoyed",
57
- # "Scotch_Terrier", "Scottish_Deerhound", "Sealyham_Terrier", "Shetland_Sheepdog", "Shiba_Inu",
58
- # "Shih-Tzu", "Siberian_Husky", "Staffordshire_Bullterrier", "Sussex_Spaniel",
59
- # "Tibetan_Mastiff", "Tibetan_Terrier", "Walker_Hound", "Weimaraner",
60
- # "Welsh_Springer_Spaniel", "West_Highland_White_Terrier", "Yorkshire_Terrier",
61
- # "Affenpinscher", "Basenji", "Basset", "Beagle", "Black-and-Tan_Coonhound", "Bloodhound",
62
- # "Bluetick", "Borzoi", "Boxer", "Briard", "Bull_Mastiff", "Cairn", "Chow", "Clumber",
63
- # "Cocker_Spaniel", "Collie", "Curly-Coated_Retriever", "Dhole", "Dingo",
64
- # "Flat-Coated_Retriever", "Giant_Schnauzer", "Golden_Retriever", "Groenendael", "Keeshond",
65
- # "Kelpie", "Komondor", "Kuvasz", "Malamute", "Malinois", "Miniature_Pinscher",
66
- # "Miniature_Poodle", "Miniature_Schnauzer", "Otterhound", "Papillon", "Pug", "Redbone",
67
- # "Schipperke", "Silky_Terrier", "Soft-Coated_Wheaten_Terrier", "Standard_Poodle",
68
- # "Standard_Schnauzer", "Toy_Poodle", "Toy_Terrier", "Vizsla", "Whippet",
69
- # "Wire-Haired_Fox_Terrier"]
70
-
71
-
72
- # class MultiHeadAttention(nn.Module):
73
-
74
- # def __init__(self, in_dim, num_heads=8):
75
- # super().__init__()
76
- # self.num_heads = num_heads
77
- # self.head_dim = max(1, in_dim // num_heads)
78
- # self.scaled_dim = self.head_dim * num_heads
79
- # self.fc_in = nn.Linear(in_dim, self.scaled_dim)
80
- # self.query = nn.Linear(self.scaled_dim, self.scaled_dim)
81
- # self.key = nn.Linear(self.scaled_dim, self.scaled_dim)
82
- # self.value = nn.Linear(self.scaled_dim, self.scaled_dim)
83
- # self.fc_out = nn.Linear(self.scaled_dim, in_dim)
84
-
85
- # def forward(self, x):
86
- # N = x.shape[0]
87
- # x = self.fc_in(x)
88
- # q = self.query(x).view(N, self.num_heads, self.head_dim)
89
- # k = self.key(x).view(N, self.num_heads, self.head_dim)
90
- # v = self.value(x).view(N, self.num_heads, self.head_dim)
91
-
92
- # energy = torch.einsum("nqd,nkd->nqk", [q, k])
93
- # attention = F.softmax(energy / (self.head_dim ** 0.5), dim=2)
94
-
95
- # out = torch.einsum("nqk,nvd->nqd", [attention, v])
96
- # out = out.reshape(N, self.scaled_dim)
97
- # out = self.fc_out(out)
98
- # return out
99
-
100
- # class BaseModel(nn.Module):
101
- # def __init__(self, num_classes, device='cuda' if torch.cuda.is_available() else 'cpu'):
102
- # super().__init__()
103
- # self.device = device
104
- # self.backbone = efficientnet_v2_m(weights=EfficientNet_V2_M_Weights.IMAGENET1K_V1)
105
- # self.feature_dim = self.backbone.classifier[1].in_features
106
- # self.backbone.classifier = nn.Identity()
107
-
108
- # self.num_heads = max(1, min(8, self.feature_dim // 64))
109
- # self.attention = MultiHeadAttention(self.feature_dim, num_heads=self.num_heads)
110
-
111
- # self.classifier = nn.Sequential(
112
- # nn.LayerNorm(self.feature_dim),
113
- # nn.Dropout(0.3),
114
- # nn.Linear(self.feature_dim, num_classes)
115
- # )
116
-
117
- # self.to(device)
118
-
119
- # def forward(self, x):
120
- # x = x.to(self.device)
121
- # features = self.backbone(x)
122
- # attended_features = self.attention(features)
123
- # logits = self.classifier(attended_features)
124
- # return logits, attended_features
125
-
126
- # # Initialize model
127
- # num_classes = len(dog_breeds)
128
- # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
129
-
130
- # # Initialize base model
131
- # model = BaseModel(num_classes=num_classes, device=device).to(device)
132
-
133
- # # Load model path
134
- # model_path = "124_best_model_dog.pth"
135
- # checkpoint = torch.load(model_path, map_location=device)
136
-
137
- # # Load model state
138
- # model.load_state_dict(checkpoint["base_model"], strict=False)
139
- # model.eval()
140
-
141
- # # Image preprocessing function
142
- # def preprocess_image(image):
143
- # # If the image is numpy.ndarray turn into PIL.Image
144
- # if isinstance(image, np.ndarray):
145
- # image = Image.fromarray(image)
146
-
147
- # # Use torchvision.transforms to process images
148
- # transform = transforms.Compose([
149
- # transforms.Resize((224, 224)),
150
- # transforms.ToTensor(),
151
- # transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
152
- # ])
153
-
154
- # return transform(image).unsqueeze(0)
155
-
156
- # async def predict_single_dog(image):
157
- # """
158
- # Predicts the dog breed using only the classifier.
159
- # Args:
160
- # image: PIL Image or numpy array
161
- # Returns:
162
- # tuple: (top1_prob, topk_breeds, relative_probs)
163
- # """
164
- # image_tensor = preprocess_image(image).to(device)
165
-
166
- # with torch.no_grad():
167
- # # Get model outputs (只使用logits,不需要features)
168
- # logits = model(image_tensor)[0] # 如果model仍返回tuple,取第一個元素
169
- # probs = F.softmax(logits, dim=1)
170
-
171
- # # Classifier prediction
172
- # top5_prob, top5_idx = torch.topk(probs, k=5)
173
- # breeds = [dog_breeds[idx.item()] for idx in top5_idx[0]]
174
- # probabilities = [prob.item() for prob in top5_prob[0]]
175
-
176
- # # Calculate relative probabilities
177
- # sum_probs = sum(probabilities[:3]) # 只取前三個來計算相對概率
178
- # relative_probs = [f"{(prob/sum_probs * 100):.2f}%" for prob in probabilities[:3]]
179
-
180
- # # Debug output
181
- # print("\nClassifier Predictions:")
182
- # for breed, prob in zip(breeds[:5], probabilities[:5]):
183
- # print(f"{breed}: {prob:.4f}")
184
-
185
- # return probabilities[0], breeds[:3], relative_probs
186
-
187
-
188
- # async def detect_multiple_dogs(image, conf_threshold=0.3, iou_threshold=0.55):
189
- # results = model_yolo(image, conf=conf_threshold, iou=iou_threshold)[0]
190
- # dogs = []
191
- # boxes = []
192
- # for box in results.boxes:
193
- # if box.cls == 16: # COCO dataset class for dog is 16
194
- # xyxy = box.xyxy[0].tolist()
195
- # confidence = box.conf.item()
196
- # boxes.append((xyxy, confidence))
197
-
198
- # if not boxes:
199
- # dogs.append((image, 1.0, [0, 0, image.width, image.height]))
200
- # else:
201
- # nms_boxes = non_max_suppression(boxes, iou_threshold)
202
-
203
- # for box, confidence in nms_boxes:
204
- # x1, y1, x2, y2 = box
205
- # w, h = x2 - x1, y2 - y1
206
- # x1 = max(0, x1 - w * 0.05)
207
- # y1 = max(0, y1 - h * 0.05)
208
- # x2 = min(image.width, x2 + w * 0.05)
209
- # y2 = min(image.height, y2 + h * 0.05)
210
- # cropped_image = image.crop((x1, y1, x2, y2))
211
- # dogs.append((cropped_image, confidence, [x1, y1, x2, y2]))
212
-
213
- # return dogs
214
-
215
- # def non_max_suppression(boxes, iou_threshold):
216
- # keep = []
217
- # boxes = sorted(boxes, key=lambda x: x[1], reverse=True)
218
- # while boxes:
219
- # current = boxes.pop(0)
220
- # keep.append(current)
221
- # boxes = [box for box in boxes if calculate_iou(current[0], box[0]) < iou_threshold]
222
- # return keep
223
-
224
-
225
- # def calculate_iou(box1, box2):
226
- # x1 = max(box1[0], box2[0])
227
- # y1 = max(box1[1], box2[1])
228
- # x2 = min(box1[2], box2[2])
229
- # y2 = min(box1[3], box2[3])
230
-
231
- # intersection = max(0, x2 - x1) * max(0, y2 - y1)
232
- # area1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
233
- # area2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
234
-
235
- # iou = intersection / float(area1 + area2 - intersection)
236
- # return iou
237
-
238
-
239
- # def create_breed_comparison(breed1: str, breed2: str) -> dict:
240
- # breed1_info = get_dog_description(breed1)
241
- # breed2_info = get_dog_description(breed2)
242
-
243
- # # 標準化數值轉換
244
- # value_mapping = {
245
- # 'Size': {'Small': 1, 'Medium': 2, 'Large': 3, 'Giant': 4},
246
- # 'Exercise_Needs': {'Low': 1, 'Moderate': 2, 'High': 3, 'Very High': 4},
247
- # 'Care_Level': {'Low': 1, 'Moderate': 2, 'High': 3},
248
- # 'Grooming_Needs': {'Low': 1, 'Moderate': 2, 'High': 3}
249
- # }
250
-
251
- # comparison_data = {
252
- # breed1: {},
253
- # breed2: {}
254
- # }
255
-
256
- # for breed, info in [(breed1, breed1_info), (breed2, breed2_info)]:
257
- # comparison_data[breed] = {
258
- # 'Size': value_mapping['Size'].get(info['Size'], 2), # 預設 Medium
259
- # 'Exercise_Needs': value_mapping['Exercise_Needs'].get(info['Exercise Needs'], 2), # 預設 Moderate
260
- # 'Care_Level': value_mapping['Care_Level'].get(info['Care Level'], 2),
261
- # 'Grooming_Needs': value_mapping['Grooming_Needs'].get(info['Grooming Needs'], 2),
262
- # 'Good_with_Children': info['Good with Children'] == 'Yes',
263
- # 'Original_Data': info
264
- # }
265
-
266
- # return comparison_data
267
-
268
-
269
- # async def predict(image):
270
- # """
271
- # Main prediction function that handles both single and multiple dog detection.
272
-
273
- # Args:
274
- # image: PIL Image or numpy array
275
-
276
- # Returns:
277
- # tuple: (html_output, annotated_image, initial_state)
278
- # """
279
- # if image is None:
280
- # return format_warning_html("Please upload an image to start."), None, None
281
-
282
- # try:
283
- # if isinstance(image, np.ndarray):
284
- # image = Image.fromarray(image)
285
-
286
- # # Detect dogs in the image
287
- # dogs = await detect_multiple_dogs(image)
288
- # color_scheme = get_color_scheme(len(dogs) == 1)
289
-
290
- # # Prepare for annotation
291
- # annotated_image = image.copy()
292
- # draw = ImageDraw.Draw(annotated_image)
293
-
294
- # try:
295
- # font = ImageFont.truetype("arial.ttf", 24)
296
- # except:
297
- # font = ImageFont.load_default()
298
-
299
- # dogs_info = ""
300
-
301
- # # Process each detected dog
302
- # for i, (cropped_image, detection_confidence, box) in enumerate(dogs):
303
- # color = color_scheme if len(dogs) == 1 else color_scheme[i % len(color_scheme)]
304
-
305
- # # Draw box and label on image
306
- # draw.rectangle(box, outline=color, width=4)
307
- # label = f"Dog {i+1}"
308
- # label_bbox = draw.textbbox((0, 0), label, font=font)
309
- # label_width = label_bbox[2] - label_bbox[0]
310
- # label_height = label_bbox[3] - label_bbox[1]
311
-
312
- # # Draw label background and text
313
- # label_x = box[0] + 5
314
- # label_y = box[1] + 5
315
- # draw.rectangle(
316
- # [label_x - 2, label_y - 2, label_x + label_width + 4, label_y + label_height + 4],
317
- # fill='white',
318
- # outline=color,
319
- # width=2
320
- # )
321
- # draw.text((label_x, label_y), label, fill=color, font=font)
322
-
323
- # # Predict breed
324
- # top1_prob, topk_breeds, relative_probs = await predict_single_dog(cropped_image)
325
- # combined_confidence = detection_confidence * top1_prob
326
-
327
- # # Format results based on confidence with error handling
328
- # try:
329
- # if combined_confidence < 0.2:
330
- # dogs_info += format_error_message(color, i+1)
331
- # elif top1_prob >= 0.45:
332
- # breed = topk_breeds[0]
333
- # description = get_dog_description(breed)
334
- # # Handle missing breed description
335
- # if description is None:
336
- # # 如果沒有描述,創建一個基本描述
337
- # description = {
338
- # "Name": breed,
339
- # "Size": "Unknown",
340
- # "Exercise Needs": "Unknown",
341
- # "Grooming Needs": "Unknown",
342
- # "Care Level": "Unknown",
343
- # "Good with Children": "Unknown",
344
- # "Description": f"Identified as {breed.replace('_', ' ')}"
345
- # }
346
- # dogs_info += format_single_dog_result(breed, description, color)
347
- # else:
348
- # # 修改format_multiple_breeds_result的調用,包含錯誤處理
349
- # dogs_info += format_multiple_breeds_result(
350
- # topk_breeds,
351
- # relative_probs,
352
- # color,
353
- # i+1,
354
- # lambda breed: get_dog_description(breed) or {
355
- # "Name": breed,
356
- # "Size": "Unknown",
357
- # "Exercise Needs": "Unknown",
358
- # "Grooming Needs": "Unknown",
359
- # "Care Level": "Unknown",
360
- # "Good with Children": "Unknown",
361
- # "Description": f"Identified as {breed.replace('_', ' ')}"
362
- # }
363
- # )
364
- # except Exception as e:
365
- # print(f"Error formatting results for dog {i+1}: {str(e)}")
366
- # dogs_info += format_error_message(color, i+1)
367
-
368
- # # Wrap final HTML output
369
- # html_output = format_multi_dog_container(dogs_info)
370
-
371
- # # Prepare initial state
372
- # initial_state = {
373
- # "dogs_info": dogs_info,
374
- # "image": annotated_image,
375
- # "is_multi_dog": len(dogs) > 1,
376
- # "html_output": html_output
377
- # }
378
-
379
- # return html_output, annotated_image, initial_state
380
-
381
- # except Exception as e:
382
- # error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
383
- # print(error_msg)
384
- # return format_warning_html(error_msg), None, None
385
-
386
-
387
- # def show_details_html(choice, previous_output, initial_state):
388
- # """
389
- # Generate detailed HTML view for a selected breed.
390
-
391
- # Args:
392
- # choice: str, Selected breed option
393
- # previous_output: str, Previous HTML output
394
- # initial_state: dict, Current state information
395
-
396
- # Returns:
397
- # tuple: (html_output, gradio_update, updated_state)
398
- # """
399
- # if not choice:
400
- # return previous_output, gr.update(visible=True), initial_state
401
-
402
- # try:
403
- # breed = choice.split("More about ")[-1]
404
- # description = get_dog_description(breed)
405
- # html_output = format_breed_details_html(description, breed)
406
-
407
- # # Update state
408
- # initial_state["current_description"] = html_output
409
- # initial_state["original_buttons"] = initial_state.get("buttons", [])
410
-
411
- # return html_output, gr.update(visible=True), initial_state
412
-
413
- # except Exception as e:
414
- # error_msg = f"An error occurred while showing details: {e}"
415
- # print(error_msg)
416
- # return format_warning_html(error_msg), gr.update(visible=True), initial_state
417
-
418
- # def main():
419
- # with gr.Blocks(css=get_css_styles()) as iface:
420
- # # Header HTML
421
-
422
- # gr.HTML("""
423
- # <header style='text-align: center; padding: 20px; margin-bottom: 20px;'>
424
- # <h1 style='font-size: 2.5em; margin-bottom: 10px; color: #2D3748;'>
425
- # 🐾 PawMatch AI
426
- # </h1>
427
- # <h2 style='font-size: 1.2em; font-weight: normal; color: #4A5568; margin-top: 5px;'>
428
- # Your Smart Dog Breed Guide
429
- # </h2>
430
- # <div style='width: 50px; height: 3px; background: linear-gradient(90deg, #4299e1, #48bb78); margin: 15px auto;'></div>
431
- # <p style='color: #718096; font-size: 0.9em;'>
432
- # Powered by AI • Breed Recognition • Smart Matching • Companion Guide
433
- # </p>
434
- # </header>
435
- # """)
436
-
437
- # # 先創建歷史組件實例(但不創建標籤頁)
438
- # history_component = create_history_component()
439
-
440
- # with gr.Tabs():
441
- # # 1. 品種檢測標籤頁
442
- # example_images = [
443
- # 'Border_Collie.jpg',
444
- # 'Golden_Retriever.jpeg',
445
- # 'Saint_Bernard.jpeg',
446
- # 'Samoyed.jpg',
447
- # 'French_Bulldog.jpeg'
448
- # ]
449
- # detection_components = create_detection_tab(predict, example_images)
450
-
451
- # # 2. 品種比較標籤頁
452
- # comparison_components = create_comparison_tab(
453
- # dog_breeds=dog_breeds,
454
- # get_dog_description=get_dog_description,
455
- # breed_health_info=breed_health_info,
456
- # breed_noise_info=breed_noise_info
457
- # )
458
-
459
- # # 3. 品種推薦標籤頁
460
- # recommendation_components = create_recommendation_tab(
461
- # UserPreferences=UserPreferences,
462
- # get_breed_recommendations=get_breed_recommendations,
463
- # format_recommendation_html=format_recommendation_html,
464
- # history_component=history_component
465
- # )
466
-
467
-
468
- # # 4. 最後創建歷史記錄標籤頁
469
- # create_history_tab(history_component)
470
-
471
- # # Footer
472
- # gr.HTML('''
473
- # <div style="
474
- # display: flex;
475
- # align-items: center;
476
- # justify-content: center;
477
- # gap: 20px;
478
- # padding: 20px 0;
479
- # ">
480
- # <p style="
481
- # font-family: 'Arial', sans-serif;
482
- # font-size: 14px;
483
- # font-weight: 500;
484
- # letter-spacing: 2px;
485
- # background: linear-gradient(90deg, #555, #007ACC);
486
- # -webkit-background-clip: text;
487
- # -webkit-text-fill-color: transparent;
488
- # margin: 0;
489
- # text-transform: uppercase;
490
- # display: inline-block;
491
- # ">EXPLORE THE CODE →</p>
492
- # <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/PawMatchAI" style="text-decoration: none;">
493
- # <img src="https://img.shields.io/badge/GitHub-PawMatch_AI-007ACC?logo=github&style=for-the-badge">
494
- # </a>
495
- # </div>
496
- # ''')
497
-
498
- # return iface
499
-
500
- # if __name__ == "__main__":
501
- # iface = main()
502
- # iface.launch()
503
-
504
  import os
505
  import numpy as np
506
  import torch
@@ -541,23 +38,18 @@ import traceback
541
  import spaces
542
  import torch.cuda.amp
543
 
544
- # os.environ['CUDA_VISIBLE_DEVICES'] = '0'
545
- # os.environ['HF_ZERO_GPU'] = '1' # 明確告訴系統我們要使用 ZeroGPU
546
- # os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
547
 
548
  @spaces.GPU
549
  def get_device():
550
  print("Initializing device configuration...")
551
 
552
  try:
553
- # 強制進行 CUDA 初始化
554
  torch.cuda.init()
555
  # 使用 mixed precision
556
  torch.set_float32_matmul_precision('medium')
557
 
558
  if torch.cuda.is_available():
559
  device = torch.device('cuda')
560
- # 設置默認的 CUDA 設備
561
  torch.cuda.set_device(device)
562
  print(f"Successfully initialized CUDA device")
563
  return device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
  import numpy as np
3
  import torch
 
38
  import spaces
39
  import torch.cuda.amp
40
 
 
 
 
41
 
42
  @spaces.GPU
43
  def get_device():
44
  print("Initializing device configuration...")
45
 
46
  try:
 
47
  torch.cuda.init()
48
  # 使用 mixed precision
49
  torch.set_float32_matmul_precision('medium')
50
 
51
  if torch.cuda.is_available():
52
  device = torch.device('cuda')
 
53
  torch.cuda.set_device(device)
54
  print(f"Successfully initialized CUDA device")
55
  return device