Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -377,9 +377,44 @@ def _detect_multiple_dogs(image, conf_threshold):
|
|
377 |
# return f"An error occurred while showing details: {e}"
|
378 |
|
379 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
async def predict(image):
|
381 |
if image is None:
|
382 |
-
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False)
|
383 |
|
384 |
try:
|
385 |
if isinstance(image, np.ndarray):
|
@@ -388,8 +423,8 @@ async def predict(image):
|
|
388 |
# ๅ่ฉฆๆชขๆธฌๅค้ป็
|
389 |
dogs = await detect_multiple_dogs(image)
|
390 |
if len(dogs) == 0:
|
391 |
-
# ๅฎ็ๆ
ๅข
|
392 |
-
return process_single_dog(image)
|
393 |
|
394 |
# ๅค็ๆ
ๅข
|
395 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
@@ -416,29 +451,29 @@ async def predict(image):
|
|
416 |
dog_explanation = f"Dog {i+1}: The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n"
|
417 |
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
418 |
explanations.append(dog_explanation)
|
419 |
-
choices.extend([f"Dog {i+1}:
|
420 |
|
421 |
final_explanation = "\n\n".join(explanations)
|
422 |
if choices:
|
423 |
final_explanation += "\n\nClick on a button to view more information about the breed."
|
424 |
-
return final_explanation, annotated_image, gr.update(visible=True, choices=choices), gr.update(visible=False)
|
425 |
else:
|
426 |
-
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False)
|
427 |
|
428 |
except Exception as e:
|
429 |
-
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False)
|
430 |
|
431 |
-
def process_single_dog(image):
|
432 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
433 |
if top1_prob < 0.2:
|
434 |
-
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False)
|
435 |
|
436 |
breed = topk_breeds[0]
|
437 |
description = get_dog_description(breed)
|
438 |
|
439 |
if top1_prob >= 0.5:
|
440 |
formatted_description = format_description(description, breed)
|
441 |
-
return formatted_description, image, gr.update(visible=False), gr.update(visible=False)
|
442 |
else:
|
443 |
explanation = (
|
444 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
@@ -447,22 +482,21 @@ def process_single_dog(image):
|
|
447 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
448 |
"Click on a button to view more information about the breed."
|
449 |
)
|
450 |
-
choices = [f"
|
451 |
-
return explanation, image, gr.update(visible=True, choices=choices), gr.update(visible=False)
|
452 |
|
453 |
def show_details(choice):
|
454 |
if not choice:
|
455 |
return "Please select a breed to view details."
|
456 |
|
457 |
try:
|
458 |
-
breed = choice.split("
|
459 |
description = get_dog_description(breed)
|
460 |
return format_description(description, breed)
|
461 |
except Exception as e:
|
462 |
return f"An error occurred while showing details: {e}"
|
463 |
|
464 |
-
|
465 |
-
|
466 |
with gr.Blocks() as iface:
|
467 |
gr.HTML("<h1 style='text-align: center;'>๐ถ Dog Breed Classifier ๐</h1>")
|
468 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
@@ -472,21 +506,20 @@ with gr.Blocks() as iface:
|
|
472 |
output_image = gr.Image(label="Annotated Image")
|
473 |
|
474 |
output = gr.Markdown(label="Prediction Results")
|
475 |
-
|
476 |
-
|
477 |
-
btn1 = gr.Button("View More 1", visible=False)
|
478 |
-
btn2 = gr.Button("View More 2", visible=False)
|
479 |
-
btn3 = gr.Button("View More 3", visible=False)
|
480 |
|
481 |
input_image.change(
|
482 |
predict,
|
483 |
inputs=input_image,
|
484 |
-
outputs=[output, output_image,
|
485 |
)
|
486 |
|
487 |
-
|
488 |
-
|
489 |
-
|
|
|
|
|
490 |
|
491 |
gr.Examples(
|
492 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
|
|
377 |
# return f"An error occurred while showing details: {e}"
|
378 |
|
379 |
|
380 |
+
# with gr.Blocks() as iface:
|
381 |
+
# gr.HTML("<h1 style='text-align: center;'>๐ถ Dog Breed Classifier ๐</h1>")
|
382 |
+
# gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
383 |
+
|
384 |
+
# with gr.Row():
|
385 |
+
# input_image = gr.Image(label="Upload a dog image", type="pil")
|
386 |
+
# output_image = gr.Image(label="Annotated Image")
|
387 |
+
|
388 |
+
# output = gr.Markdown(label="Prediction Results")
|
389 |
+
|
390 |
+
# with gr.Row():
|
391 |
+
# btn1 = gr.Button("View More 1", visible=False)
|
392 |
+
# btn2 = gr.Button("View More 2", visible=False)
|
393 |
+
# btn3 = gr.Button("View More 3", visible=False)
|
394 |
+
|
395 |
+
# input_image.change(
|
396 |
+
# predict,
|
397 |
+
# inputs=input_image,
|
398 |
+
# outputs=[output, output_image, btn1, btn2, btn3]
|
399 |
+
# )
|
400 |
+
|
401 |
+
# btn1.click(show_details, inputs=btn1, outputs=output)
|
402 |
+
# btn2.click(show_details, inputs=btn2, outputs=output)
|
403 |
+
# btn3.click(show_details, inputs=btn3, outputs=output)
|
404 |
+
|
405 |
+
# gr.Examples(
|
406 |
+
# examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|
407 |
+
# inputs=input_image
|
408 |
+
# )
|
409 |
+
|
410 |
+
# gr.HTML('For more details on this project and other work, feel free to visit my GitHub <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Dog_Breed_Classifier">Dog Breed Classifier</a>')
|
411 |
+
|
412 |
+
# if __name__ == "__main__":
|
413 |
+
# iface.launch()
|
414 |
+
|
415 |
async def predict(image):
|
416 |
if image is None:
|
417 |
+
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False)
|
418 |
|
419 |
try:
|
420 |
if isinstance(image, np.ndarray):
|
|
|
423 |
# ๅ่ฉฆๆชขๆธฌๅค้ป็
|
424 |
dogs = await detect_multiple_dogs(image)
|
425 |
if len(dogs) == 0:
|
426 |
+
# ๅฎ็ๆ
ๅข
|
427 |
+
return await process_single_dog(image)
|
428 |
|
429 |
# ๅค็ๆ
ๅข
|
430 |
color_list = ['#FF0000', '#00FF00', '#0000FF', '#FFFF00', '#00FFFF', '#FF00FF', '#800080', '#FFA500']
|
|
|
451 |
dog_explanation = f"Dog {i+1}: The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n"
|
452 |
dog_explanation += "\n".join([f"{j+1}. **{breed}** ({prob} confidence)" for j, (breed, prob) in enumerate(zip(topk_breeds[:3], topk_probs_percent[:3]))])
|
453 |
explanations.append(dog_explanation)
|
454 |
+
choices.extend([f"Dog {i+1}: {breed}" for breed in topk_breeds[:3]])
|
455 |
|
456 |
final_explanation = "\n\n".join(explanations)
|
457 |
if choices:
|
458 |
final_explanation += "\n\nClick on a button to view more information about the breed."
|
459 |
+
return final_explanation, annotated_image, gr.update(visible=True, choices=choices), gr.update(visible=False)
|
460 |
else:
|
461 |
+
return final_explanation, annotated_image, gr.update(visible=False), gr.update(visible=False)
|
462 |
|
463 |
except Exception as e:
|
464 |
+
return f"An error occurred: {str(e)}", None, gr.update(visible=False), gr.update(visible=False)
|
465 |
|
466 |
+
async def process_single_dog(image):
|
467 |
top1_prob, topk_breeds, topk_probs_percent = await predict_single_dog(image)
|
468 |
if top1_prob < 0.2:
|
469 |
+
return "The image is unclear or the breed is not in the dataset. Please upload a clearer image of a dog.", None, gr.update(visible=False), gr.update(visible=False)
|
470 |
|
471 |
breed = topk_breeds[0]
|
472 |
description = get_dog_description(breed)
|
473 |
|
474 |
if top1_prob >= 0.5:
|
475 |
formatted_description = format_description(description, breed)
|
476 |
+
return formatted_description, image, gr.update(visible=False), gr.update(visible=False)
|
477 |
else:
|
478 |
explanation = (
|
479 |
f"The model couldn't confidently identify the breed. Here are the top 3 possible breeds:\n\n"
|
|
|
482 |
f"3. **{topk_breeds[2]}** ({topk_probs_percent[2]} confidence)\n\n"
|
483 |
"Click on a button to view more information about the breed."
|
484 |
)
|
485 |
+
choices = [f"{breed}" for breed in topk_breeds[:3]]
|
486 |
+
return explanation, image, gr.update(visible=True, choices=choices), gr.update(visible=False)
|
487 |
|
488 |
def show_details(choice):
|
489 |
if not choice:
|
490 |
return "Please select a breed to view details."
|
491 |
|
492 |
try:
|
493 |
+
breed = choice.split(": ")[-1] # ่็ๅฏ่ฝ็ "Dog X: " ๅ็ถด
|
494 |
description = get_dog_description(breed)
|
495 |
return format_description(description, breed)
|
496 |
except Exception as e:
|
497 |
return f"An error occurred while showing details: {e}"
|
498 |
|
499 |
+
# ไป้ข้จๅ
|
|
|
500 |
with gr.Blocks() as iface:
|
501 |
gr.HTML("<h1 style='text-align: center;'>๐ถ Dog Breed Classifier ๐</h1>")
|
502 |
gr.HTML("<p style='text-align: center;'>Upload a picture of a dog, and the model will predict its breed, provide detailed information, and include an extra information link!</p>")
|
|
|
506 |
output_image = gr.Image(label="Annotated Image")
|
507 |
|
508 |
output = gr.Markdown(label="Prediction Results")
|
509 |
+
breed_choices = gr.Radio([], label="Select breed for more details", visible=False)
|
510 |
+
breed_details = gr.Markdown(label="Breed Details")
|
|
|
|
|
|
|
511 |
|
512 |
input_image.change(
|
513 |
predict,
|
514 |
inputs=input_image,
|
515 |
+
outputs=[output, output_image, breed_choices, breed_details]
|
516 |
)
|
517 |
|
518 |
+
breed_choices.change(
|
519 |
+
show_details,
|
520 |
+
inputs=breed_choices,
|
521 |
+
outputs=breed_details
|
522 |
+
)
|
523 |
|
524 |
gr.Examples(
|
525 |
examples=['Border_Collie.jpg', 'Golden_Retriever.jpeg', 'Saint_Bernard.jpeg', 'French_Bulldog.jpeg', 'Samoyed.jpg'],
|